RELATIVELY HYPERBOLIC GROUPS ARE C*-SIMPLE

G. ARZHANTSEVA AND A. MINASYAN

ABSTRACT. We characterize relatively hyperbolic groups whose reduced
C*-algebra is simple as those, which have no non-trivial finite normal sub-
groups.

1. INTRODUCTION

Let G be a countable discrete group. We denote by ¢?(G) the Hilbert space
of square-summable complex-valued functions on G and by B(¢%(G)) the algebra
of bounded operators on ¢2(G). The group G acts on £*(G) by means of the left
regular representation:

ANg)f(h) = f(g~"h), g,h € G, f € *(G).

The reduced C*-algebra C}(G) of G is the operator norm closure of the linear span
of the set of operators {A(g) | ¢ € G} in B(f?(G)). It has a unit element and
the canonical trace 7 : C*(G) — C, given by 7(1) = 1 and 7(A(g)) = 0 for all
g € G\ {1}. This C*-algebra reflects analytic properties of the group G. It plays
an important role in non-commutative geometry and, via K-theory, in the Baum-
Connes conjecture [22].

We say that the group G is C*-simple if its reduced C*-algebra is simple, that
is, it has no non-trivial two-sided ideals.

In 1975 Powers established the C*-simplicity of non-abelian free groups [21].
Later, many other examples of C*-simple groups were found. These include non-
trivial free products [20], torsion-free non-elementary Gromov hyperbolic groups
[13, 15] (more generally, torsion-free non-elementary convergence groups [14]), cen-
terless mapping class groups and outer automorphism groups of free groups [5],
irreducible Coxeter groups which are neither finite nor affine [I1], etc. A nice
overview of C*-simple groups can be found in [I4].

The C*-simplicity can be regarded as a strong form of non-amenability: if G is
both amenable and C*-simple then G is reduced to one element [14]. It is a classical
result that the existence of free subgroups in the group implies non-amenability. In
[2], Bekka, Cowling and de la Harpe introduced the following “free-like” property
for finite subsets of a group:

Definition. A discrete group G is said to have Property P,; if for any finite subset
F of G\ {1} there exists an element gy € G of infinite order such that for each
f € F, the subgroup (f, go) of G, generated by f and go, is canonically isomorphic
to the free product (f) * (go).
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This property guarantees that C;(G) is simple and has a unique normalized
trace [2]. Recall that a normalized trace on a C*-algebra A with unit is a linear
map o : A — C such that o(1) =1, o(a*a) > 0, and o(ab) = o(ba) for all a,b in A.

In the present article our main goal is to characterize C*-simple relatively hyper-
bolic groups. The class of relatively hyperbolic groups, that is, groups hyperbolic
with respect to appropriate collections of subgroups, is very large. It includes Gro-
mov hyperbolic groups and many other examples. For instance, if M is a complete
Riemannian finite—volume manifold of pinched negative sectional curvature, then
m1(M) is hyperbolic with respect to the cusp subgroups [4, [10]. More generally,
if G acts isometrically and properly discontinuously on a proper hyperbolic metric
space X so that the induced action of G on 0X is geometrically finite, then G is
hyperbolic relative to the collection of maximal parabolic subgroups [4]. Groups
acting on CAT(0) spaces with isolated flats are hyperbolic relative to the collection
of flat stabilizers [16]. Algebraic examples of relatively hyperbolic groups include
free products and their small cancellation quotients [I9], and fully residually free
groups (or Sela’s limit groups) [7].

The notion of a relatively hyperbolic group was originally suggested by Gromov
[12] and since then it has been investigated from different points of view [4} [I0} @] [§].
We use a general approach suggested by Osin in [19] (see the next section for details)
which, when applied to finitely generated groups, is equivalent to those elaborated
by Bowditch [4] and Farb (with the “bounded coset penetration” condition) [10].

Every non-elementary group G which is hyperbolic relatively to a collection
of proper subgroups, or NPRH grou;ﬂ for brevity, has a mazimal finite normal
subgroup denoted by E(G) [Il, Lemma 3.3]. The quotient G; = G/E(G) is again a
NPRH group [I, Lemma 4.4] and, clearly, E(G1) = {1}. The main result of this
paper is the following

Theorem 1. Let G be a non-elementary group hyperbolic relatively to a collection
of proper subgroups {Hx}xea. If E(G) = {1} then G satisfies Property Ppa;.

Corollary 2. Let G be a NPRH group. Then the following are equivalent.

(i) The reduced C*-algebra of G is simple;
(ii) The reduced C*-algebra of G has a unique normalized trace;
(iii) G has infinite conjugacy classeﬂ'

(iv) G does not have non-trivial finite normal subgroups.

Proof. A discrete C*-simple group cannot have a non-trivial amenable normal sub-
group [3, Prop. 2]. A similar argument shows the same for a discrete group of
which the reduced C*-algebra has a unique normalized trace [3, Prop. 2]. Evi-
dently, a group with infinite conjugacy classes contains no non-trivial finite normal
subgroups. Therefore each of the properties (i) — (iii) implies (iv).

Suppose, now, that (iv) holds. Then Theoremand the result of Bekka-Cowling-
de la Harpe [2] mentioned above imply (i) and (ii). Property (iii) follows from (i)
as noted in [14]. O

LThis refers to a non-elementary properly relatively hyperbolic group. A group is elementary
if it has a cyclic subgroup of finite index.

2A group G has infinite conjugacy classes, or, shortly, is icc, if it is infinite and if all its
conjugacy classes distinct from {1} are infinite. A group G is icc if and only if the von Neumann
algebra W*(T') is a factor of type IIy [I7, Lemma 5.3.4].
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Observe that a C*-simple group is icc but the converse is not true in general as
there exist amenable icc groups. However, it is an open problem to find a group
G such that C}(G) is simple with several normalized traces, or a group such that
C*(@G) has a unique normalized trace and is not simple [3, Prop. 2].

Every non-elementary Gromov hyperbolic group is a NPRH group with respect
to the family consisting of the trivial subgroup. Therefore Corollary [2]also describes
all C*-simple Gromov hyperbolic groups.

Recall that any countable group G has a maximal normal amenable subgroup
R.(G) <G called the amenable radical of G. Corollary 2] together with the existence
of a maximal finite normal subgroup, imply that for any NPRH group G, the
quotient G/FE(G) is C*-simple. Since R,(G/E(G)) = R.(G)/E(QG) it follows (see
[B, Prop. 2]) that R,(G) = E(G). We have just obtained

Corollary 3. The amenable radical of a NPRH group G coincides with its mazimal
finite normal subgroup E(G) and the quotient G/E(G) is C*-simple with a unique
normalized trace.

Thus, a NPRH group G is C*-simple if and only if its amenable radical is reduced
to one element. It is worth noticing that it is not yet known whether there exists
a countable group G whose amenable radical is trivial but G is not C*-simple [14}
Question 4].

Easy examples of C*-simple NPRH groups include non-abelian fully residually
free groups G mentioned above [7]. Indeed, since non-abelian free groups satisfy
Property P, in an obvious way, a standard argumentﬂ shows the same for G.
This method, however, cannot be applied to prove Theorem [1| because there exist
C*-simple NPRH groups which are not fully residually hyperbolic (more generally,
which are not limits of Gromov hyperbolic groups in the space of marked groups —
see [6] for the definitions). As an example one can take a free product S * Z, where
S is an infinite finitely presented simple group.

Acknowledgments. The authors would like to thank Pierre de la Harpe for fruitful
discussions.

2. RELATIVELY HYPERBOLIC GROUPS AND THEIR PROPERTIES

Let G be a group, { Hx }aca a fixed collection of subgroups of G (called peripheral
subgroups), X a subset of G. We say that X is a relative generating set of G with
respect to {H)}xea if G is generated by X together with the union of all Hy. In
this situation the group G can be considered as a quotient of the free product

F = (xxenH)y) * F(X),

where F'(X) is the free group with basis X. Let R be a subset of F' such that the
kernel of the natural epimorphism F' — G is the normal closure of R in the group

3Consider a finite subset F' C G\ {1}. By the assumptions, there exist a non-abelian free group
H and a homomorphism ¢ : G — H such that ¢(F) C H \ {1}. Any subgroup of a free group is
free itself, hence we can suppose that ¢ is surjective. As H satisfies Property P ,i, we can choose
h € H so that for every f € F, the elements (f) and h freely generate a free subgroup H' < H
of rank 2. Choose an arbitrary preimage go of h in G. For any f € F the restriction of ¢ to
the subgroup (f, go) is an isomorphism with H’, because a non-trivial element in its kernel would
yield a non-trivial relation between the images ¢(f) and ¢(go) = h. Thus, (f,go) = (f) * (go0),
and G satisfies Property Ppa;.
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F'; we say that G has relative presentation
(1) (X, {Hx}xea |[R=1, RER).

If the sets X and R are finite, the relative presentation is said to be finite.

Set H = | Jyea(Hx \ {1}). A finite relative presentation is said to satisfy a
linear relative isoperimetric inequality if there exists C' > 0 such that, for every word
w in the alphabet X UH (for convenience, we assume further on that X! = X)
representing the identity in the group G, one has

k
w=p [[# 'R,

i=1

with equality in the group F, where R; € R, f; € F,fori=1,... k,and k < C||w|],
where ||w]| is the length of the word w.

The group G is called relatively hyperbolic with respect to a collection of peripheral
subgroups {Hx}xen, if G admits a finite relative presentation satisfying a linear
relative isoperimetric inequality. This definition is independent of the choice of the
finite generating set X and the finite set R in (see [19)).

For a combinatorial path p in the Cayley graph I'(G, X UH) of G with respect
to X UM, we denote by p_, p; and ||p|| the initial point, the end point and the
length correspondingly. We will write elem(p) for the element of G represented
by the label of p. Further, if € is a subset of G and g belongs to the subgroup
() < G generated by €2, then |g|q will denote the length of a shortest word in QF!,
representing g.

Suppose ¢ is a path in I'(G, X UH). Using the terminology of [19], a subpath
p is called an Hy-component (or, simply, a component) of ¢, if the label of p is a
word in the alphabet H) \ {1} for some A € A, and p is not contained in a longer
subpath of ¢ with this property.

Two components pi,p2 of a path ¢ in I'(G, X UH) are called connected if they
are Hy—components for the same A € A and there exists a path ¢ in I'(G, X UH)
connecting a vertex of p; to a vertex of ps whose label entirely consists of letters
from Hy. In algebraic terms, this means that all vertices of p; and ps belong to
the same coset gH ) for a certain g € G. We can always assume ¢ to have length at
most 1, as every non-trivial element of H is included in the set of generators of G.
An Hj,—component p of a path ¢ is called isolated if no other Hy—component of ¢
is connected to p.

The next statement is often useful in the study of relatively hyperbolic groups.

Lemma 4 ([I9], Lemma 2.27). Suppose that a group G is hyperbolic relatively to
a collection of subgroups {Hx}xep. Then there exist a finite subset Q@ C G and a
constant K > 0 such that the following holds.

Let q be a cycle in T(G, X UH), p1,...,pr a set of isolated Hx—components of q
for some A € A. Denote by ¢1,...,gr the elements of G which are represented by
the labels of p1,...,pr respectively. Then g1, ...,gr belong to the subgroup (Q) < G
and the word lengths of g;’s with respect to Q satisfy the inequality

k
> lgile < Klql.

i=1
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An element g € G is called hyperbolic if it is not conjugate to an element of
some Hy, A € A. The following description of elementary subgroups in a relatively
hyperbolic group was obtained by Osin.

Lemma 5 ([I8], Thm. 4.3, Cor. 1.7). Let G be a group hyperbolic relatively to a
collection of subgroups {Hx}xen. Let g be a hyperbolic element of infinite order of
G. Then the following conditions hold.

(1) The element g is contained in a unique maximal elementary subgroup Ec(g)
of G; moreover,

Eqlg) ={feG : f~lg"f = g*" for some n € N}.
(2) The group G is hyperbolic relative to the collection {Hx}xea U{Ec(9)}.

A significant restriction on the choice of peripheral subgroups is described in the
lemma below.

Lemma 6 ([I9], Thm. 1.4). Suppose that a group G is hyperbolic relative to a
collection of subgroups {Hx}xen. Then

(a) For any g € G and any A\, u € A, X\ # p, the intersection H N H,, is finite.
(b) For any A € A and any g ¢ Hy, the intersection HY N Hy is finite.

3. PROOF OF THE MAIN RESULT

Throughout this section we assume that G is a non-elementary group hyperbolic
relatively to a family of proper subgroups {H)}xea-

Lemma 7. Let g € G be a hyperbolic element of infinite order satisfying Ec(g) =
(g). Then there exists N € N such that for any n > N and X\ € A, the subgroup
(Hx,g™) < G 1is canonically isomorphic to the free product Hy * (g").

Proof. By Lemma |5, G is hyperbolic relatively to the collection {H)}rea U (g).
Lemma [4] provides a finite subset {2 of G and a constant K > 0 corresponding to
this new family of peripheral subgroups. Since the order of g is infinite, there exists
N € N such that

(2) g"¢{ye(Q) : |lylo < 8K} provided |m| > N.

Fix n > N and A € A. Suppose, on the contrary, that the subgroup of G,
generated by H) and (¢g"), is not canonically isomorphic to their free product.
Then there exist k € N, I1,...,l € nZ\ {0} and x1,...,2, € Hy \ {1} such that

l 1 l
19" w2g”? -1k =g 1.

Define H' = | Jyca(Hx \ {1}) U ((9) \ {1}). Consider the cycle ¢ = pip2...pax
in the Cayley graph I'(G,X U H'), where elem(p)) = z1, elem(p2) = g, ...,
elem(pag_1) = xp, elem(par) = g'* and ||pi|| =1,i=1,...,2k.

Suppose, at first, that there are two (g)-components ps and p; of ¢, 2 < s <
t < 2k, which are connected. Then there exists a path u between (p;)— and (ps)+,
labelled by an element from (g) (in particular, ||u|| < 1). Without loss of generality,
we may assume that (¢ — s) is minimal.

Consider the cycle 0 = pgyq1...pi—1u in T(G, X UH'). Ift = s+ 2, then
elem(psy1) = elem(u™t) € Hy\N{g) = {1} (by Lemma@, which would contradict to
the choice of q. Hence t > s+4 and ps42, Ps+4, - - - , Pt—2 are isolated (g)-components
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of o. Applying Lemmal4]to the cycle o, we achieve elem(ps42), . . ., elem(p,—2) € (Q)
and

lelem(poa)lo + lelem(posa)la + - - + lelem(pi—o)la < Klof| = K(t - s).

Since elem(ps+2), - .., elem(pi—2) € (¢™) \ {1}, we can use the formula (2)) to obtain

8Ku < K(t—s), consequently 4 < _tos <3.
2 t—s—2
A contradiction.
Therefore all (g)-components of ¢ have to be isolated. Applying Lemma [ to
the cycle ¢ leads to a contradiction by the same argument as before. Thus, the

statement is proved. O

Each NPRH group has a hyperbolic element of infinite order [I8, Cor. 4.5],
therefore we can use the following simplification of Lemma 3.8 from [1]:

Lemma 8. FEvery NPRH group G contains a hyperbolic element g of infinite order
such that Eq(g) = (g) x E(Q).

Proof of Theorem[]l Consider an arbitrary finite subset F = {f1,..., fm} of G.
For every i, if f; € F' is an element of finite order, then we can include the finite
subgroup (f;) in the collection of peripheral subgroups { Hy } xca, preserving the rel-
ative hyperbolicity of G (for instance, by the characterization of all “hyperbolically
embedded subgroups” obtained in [I8, Thm. 1.5]). If f € F is a hyperbolic ele-
ment of infinite order, we use Lemma [5| to include the elementary subgroup Eg(f)
in {Hx}xea. Thus, further on, we can assume that for each i € {1,...,m} there
exist A\; € A and h; € G such that

(3) (fi) < hiHx.hi"

Since E(G) = {1} by the hypothesis, we can apply Lemmato find a hyperbolic
element g € G of infinite order such that Fg(g) = (g). Therefore the elements
gi=h; Lgh; satisfy the assumptions of Lemmal|7} thus there exist N; € N such that
the subgroup (Hy,, g;") < G is canonically isomorphic to the free product of Hj,
and (g;'") for each n;, > N; and i = 1,...,m. Set n = max{N; | i = 1,...,m}.
Formula and the definition of g; imply that the subgroup (f;, g") of the group
G is isomorphic to the free product (f;) * (¢g") for every ¢ = 1,...,m. Hence G
satisfies Property Pia;. O
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