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The profinite topology

Let G be a group. Consider the cosets to finite index normal
subgroups as basic open subsets of G. Thus one obtains the
profinite topology PT (G).
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The profinite topology

Let G be a group. Consider the cosets to finite index normal
subgroups as basic open subsets of G. Thus one obtains the
profinite topology PT (G).

Studying the structure of a given subgroup H ≤ G is much
easier, if one knows that H is closed in PT (G).
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The profinite topology

Let G be a group. Consider the cosets to finite index normal
subgroups as basic open subsets of G. Thus one obtains the
profinite topology PT (G).

Studying the structure of a given subgroup H ≤ G is much
easier, if one knows that H is closed in PT (G).
If H ≤ G, define

H∗ =
⋂

{K | H ≤ K ≤ G, |G : K| < ∞} – closure of H.

Then H = H∗ iff H is separable.
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The profinite topology

Let G be a group. Consider the cosets to finite index normal
subgroups as basic open subsets of G. Thus one obtains the
profinite topology PT (G).

Studying the structure of a given subgroup H ≤ G is much
easier, if one knows that H is closed in PT (G).
If H ≤ G, define

H∗ =
⋂

{K | H ≤ K ≤ G, |G : K| < ∞} – closure of H.

Then H = H∗ iff H is separable.

G is residually finite (RF) if {1} is separable.
G is LERF if every f.g. subgroup is closed in PT (G).
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The profinite topology

Let G be a group. Consider the cosets to finite index normal
subgroups as basic open subsets of G. Thus one obtains the
profinite topology PT (G).

Studying the structure of a given subgroup H ≤ G is much
easier, if one knows that H is closed in PT (G).
If H ≤ G, define

H∗ =
⋂

{K | H ≤ K ≤ G, |G : K| < ∞} – closure of H.

Then H = H∗ iff H is separable.

G is residually finite (RF) if {1} is separable.
G is LERF if every f.g. subgroup is closed in PT (G).

Known examples of LERF groups include free groups,
surface groups and fundamental groups of certain
3-manifolds.
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Engulfing

In order to study separability properties of 3-manifold groups,
D. Long gave the following definition:

Def. H � G is engulfed if ∃ K � G such that H ≤ K and
|G : K| < ∞.
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Engulfing

In order to study separability properties of 3-manifold groups,
D. Long gave the following definition:

Def. H � G is engulfed if ∃ K � G such that H ≤ K and
|G : K| < ∞.

Thm.(Long, 1988). Let G be a fundamental group of a closed
hyp. 3-manifold. Suppose that G engulfs every f.g. M ≤ G

with Λ(M) $ S2

∞
. Then ∀ H ≤g.f. G one has |H∗ : H| < ∞.
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Engulfing

In order to study separability properties of 3-manifold groups,
D. Long gave the following definition:

Def. H � G is engulfed if ∃ K � G such that H ≤ K and
|G : K| < ∞.

Thm.(Long, 1988). Let G be a fundamental group of a closed
hyp. 3-manifold. Suppose that G engulfs every f.g. M ≤ G

with Λ(M) $ S2

∞
. Then ∀ H ≤g.f. G one has |H∗ : H| < ∞.

Motivating the above result, Long noted that proving that a
f.g. subgroup is engulfed may be much easier than showing
that it is separable.
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Generalization to hyperbolic groups

Assume, now, that G is word hyperbolic in the sense of
Gromov and ∂G is the visual boundary of G.
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Generalization to hyperbolic groups

Assume, now, that G is word hyperbolic in the sense of
Gromov and ∂G is the visual boundary of G.

Thm. A (Niblo-Williams, 2002). Suppose that G engulfs every
f.g. free subgroup F with Λ(F ) $ ∂G. Then⋂
{K | |G : K| < ∞} is finite. If G is torsion-free then it is

residually finite.
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Generalization to hyperbolic groups

Assume, now, that G is word hyperbolic in the sense of
Gromov and ∂G is the visual boundary of G.

Thm. A (Niblo-Williams, 2002). Suppose that G engulfs every
f.g. free subgroup F with Λ(F ) $ ∂G. Then⋂
{K | |G : K| < ∞} is finite. If G is torsion-free then it is

residually finite.

Def. A subset Q ⊂ G is called quasiconvex if ∃ ε ≥ 0 such
that ∀ x, y ∈ Q, [x, y] ⊂ Nε(Q) in the Cayley graph of G.
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Generalization to hyperbolic groups

Assume, now, that G is word hyperbolic in the sense of
Gromov and ∂G is the visual boundary of G.

Thm. A (Niblo-Williams, 2002). Suppose that G engulfs every
f.g. free subgroup F with Λ(F ) $ ∂G. Then⋂
{K | |G : K| < ∞} is finite. If G is torsion-free then it is

residually finite.

Def. A subset Q ⊂ G is called quasiconvex if ∃ ε ≥ 0 such
that ∀ x, y ∈ Q, [x, y] ⊂ Nε(Q) in the Cayley graph of G.

Thm. B (Niblo-Williams, 2002). If G engulfs every f.g.
subgroup M with Λ(M) $ ∂G, then ∀ H ≤q.c. G one has
|H∗ : H| < ∞.
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Generalization to hyperbolic groups

Assume, now, that G is word hyperbolic in the sense of
Gromov and ∂G is the visual boundary of G.

Thm. A (Niblo-Williams, 2002). Suppose that G engulfs every
f.g. free subgroup F with Λ(F ) $ ∂G. Then⋂
{K | |G : K| < ∞} is finite. If G is torsion-free then it is

residually finite.

Def. A subset Q ⊂ G is called quasiconvex if ∃ ε ≥ 0 such
that ∀ x, y ∈ Q, [x, y] ⊂ Nε(Q) in the Cayley graph of G.

Thm. B (Niblo-Williams, 2002). If G engulfs every f.g.
subgroup M with Λ(M) $ ∂G, then ∀ H ≤q.c. G one has
|H∗ : H| < ∞.

Remark. It is easy to construct a non-q.c. sbgp. H such that
|G : H| = ∞ and H∗ = G.
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Main Results

Consider the following three properties of a hyp. gp. G:
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Main Results

Consider the following three properties of a hyp. gp. G:

(FEP) Each proper free q.c. sbgp. of rank s is engulfed
(where s = rank(G)).
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Main Results

Consider the following three properties of a hyp. gp. G:

(FEP) Each proper free q.c. sbgp. of rank s is engulfed
(where s = rank(G)).

(EP) Each proper q.c. sbgp. is engulfed.
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Main Results

Consider the following three properties of a hyp. gp. G:

(FEP) Each proper free q.c. sbgp. of rank s is engulfed
(where s = rank(G)).

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in PT (G).
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Main Results

Consider the following three properties of a hyp. gp. G:

(FEP) Each proper free q.c. sbgp. of rank s is engulfed
(where s = rank(G)).

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in PT (G).

Thm. 1 (M., 2005). FEP ⇒
⋂
{K | |G : K| < ∞} is finite. If

G is torsion-free (TF) then it is residually finite (RF).
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Main Results

Consider the following three properties of a hyp. gp. G:

(FEP) Each proper free q.c. sbgp. of rank s is engulfed
(where s = rank(G)).

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in PT (G).

Thm. 1 (M., 2005). FEP ⇒
⋂
{K | |G : K| < ∞} is finite. If

G is torsion-free (TF) then it is residually finite (RF).

Thm. 2 (M., 2005). EP ⇒ ∀ H ≤q.c. G one has
|H∗ : H| < ∞.
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Main Results

Consider the following three properties of a hyp. gp. G:

(FEP) Each proper free q.c. sbgp. of rank s is engulfed
(where s = rank(G)).

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in PT (G).

Thm. 1 (M., 2005). FEP ⇒
⋂
{K | |G : K| < ∞} is finite. If

G is torsion-free (TF) then it is residually finite (RF).

Thm. 2 (M., 2005). EP ⇒ ∀ H ≤q.c. G one has
|H∗ : H| < ∞.

Thm. 3 (M., 2005). EP & RF ⇒ GFERF.
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Main Results

Consider the following three properties of a hyp. gp. G:

(FEP) Each proper free q.c. sbgp. of rank s is engulfed
(where s = rank(G)).

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in PT (G).

Thm. 1 (M., 2005). FEP ⇒
⋂
{K | |G : K| < ∞} is finite. If

G is torsion-free (TF) then it is residually finite (RF).

Thm. 2 (M., 2005). EP ⇒ ∀ H ≤q.c. G one has
|H∗ : H| < ∞.

Thm. 3 (M., 2005). EP & RF ⇒ GFERF.

Cor. 1 (M., 2005). EP & TF ⇒ GFERF.
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Main Results

Consider the following three properties of a hyp. gp. G:

(FEP) Each proper free q.c. sbgp. of rank s is engulfed
(where s = rank(G)).

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in PT (G).

Thm. 1 (M., 2005). FEP ⇒
⋂
{K | |G : K| < ∞} is finite. If

G is torsion-free (TF) then it is residually finite (RF).

Thm. 2 (M., 2005). EP ⇒ ∀ H ≤q.c. G one has
|H∗ : H| < ∞.

Thm. 3 (M., 2005). EP & RF ⇒ GFERF.

Cor. 2 (M., 2005). EP ⇒ ∀ H ≤q.c. G, H∗ = HQ where
Q =

⋂
{K | |G : K| < ∞}.
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Proof in a special case

Thm. 2. EP ⇒ ∀ H ≤q.c. G one has |H∗ : H| < ∞.

Cor. 1. EP & TF ⇒ GFERF.
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Proof in a special case

Thm. 2. EP ⇒ ∀ H ≤q.c. G one has |H∗ : H| < ∞.

Cor. 1. EP & TF ⇒ GFERF.

Proof of Thm. 2 ⇒ Cor. 1 . Assume G � (EP & TF).
Let H ≤q.c. G, |G : H| = ∞ and suppose that H � H∗.
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Proof in a special case

Thm. 2. EP ⇒ ∀ H ≤q.c. G one has |H∗ : H| < ∞.

Cor. 1. EP & TF ⇒ GFERF.

Proof of Thm. 2 ⇒ Cor. 1 . Assume G � (EP & TF).
Let H ≤q.c. G, |G : H| = ∞ and suppose that H � H∗.

Thm. 2 ⇒ |H∗ : H| < ∞, hence H∗ is also q.c.
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Proof in a special case

Thm. 2. EP ⇒ ∀ H ≤q.c. G one has |H∗ : H| < ∞.

Cor. 1. EP & TF ⇒ GFERF.

Proof of Thm. 2 ⇒ Cor. 1 . Assume G � (EP & TF).
Let H ≤q.c. G, |G : H| = ∞ and suppose that H � H∗.

Thm. 2 ⇒ |H∗ : H| < ∞, hence H∗ is also q.c.

G. Arzhantseva (2001): ∃ g ∈ G s.t. B = 〈g, H∗〉 ∼= 〈g〉 ∗ H∗

and A = 〈g, H〉 is q.c. in G. In particular, |B : A| = ∞.
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Proof in a special case

Thm. 2. EP ⇒ ∀ H ≤q.c. G one has |H∗ : H| < ∞.

Cor. 1. EP & TF ⇒ GFERF.

Proof of Thm. 2 ⇒ Cor. 1 . Assume G � (EP & TF).
Let H ≤q.c. G, |G : H| = ∞ and suppose that H � H∗.

Thm. 2 ⇒ |H∗ : H| < ∞, hence H∗ is also q.c.

G. Arzhantseva (2001): ∃ g ∈ G s.t. B = 〈g, H∗〉 ∼= 〈g〉 ∗ H∗

and A = 〈g, H〉 is q.c. in G. In particular, |B : A| = ∞.

Thm. 2 ⇒ |A∗ : A| < ∞. Evidently, B ≤ A∗, thus
|B : A| < ∞ – a contradiction. �
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Open Questions

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in PT (G).
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Open Questions

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in PT (G).

Q.1. If G � EP, is it true that G ∗ Z � EP ?

The positive answer would show that EP ⇒ RF.
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Open Questions

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in PT (G).

Q.1. If G � EP, is it true that G ∗ Z � EP ?

The positive answer would show that EP ⇒ RF.

Q.2. Does there exists a hyp. gp. G which is not GFERF ?
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Open Questions

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in PT (G).

Q.1. If G � EP, is it true that G ∗ Z � EP ?

The positive answer would show that EP ⇒ RF.

Q.2. Does there exists a hyp. gp. G which is not GFERF ?

Q.3. Let G be a hyperbolic mapping torus of a free group, i.e.,

G = HNNϕ(F (X)) where ϕ : F (X) →֒ F (X).

Does G have EP ?
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