On the Engulfing Property for word hyperbolic groups

Ashot Minasyan

Université de Genève

Let G be a group. Consider the cosets to finite index normal subgroups as basic open subsets of G. Thus one obtains the profinite topology $\mathcal{P}\mathcal{T}(G)$.

The profinite topology

Engulfing

Generalization to hyp. groups

Main Results

Proof in a special case

Let G be a group. Consider the cosets to finite index normal subgroups as basic open subsets of G. Thus one obtains the profinite topology $\mathcal{P}\mathcal{T}(G)$.

Studying the structure of a given subgroup $H \leq G$ is much easier, if one knows that H is closed in $\mathcal{PT}(G)$.

The profinite topology

Engulfing Generalization to hyp. groups Main Results

Let G be a group. Consider the cosets to finite index normal subgroups as basic open subsets of G. Thus one obtains the profinite topology $\mathcal{P}\mathcal{T}(G)$.

Studying the structure of a given subgroup $H \leq G$ is much easier, if one knows that H is closed in $\mathcal{PT}(G)$. If $H \leq G$, define

$$H^* = \bigcap \{K \mid H \leq K \leq G, \mid G:K \mid <\infty\}$$
 - closure of H .

Then $H = H^*$ iff H is separable.

The profinite topology

Open Questions

Engulfing
Generalization to hyp. groups
Main Results
Proof in a special case

Let G be a group. Consider the cosets to finite index normal subgroups as basic open subsets of G. Thus one obtains the profinite topology $\mathcal{P}\mathcal{T}(G)$.

Studying the structure of a given subgroup $H \leq G$ is much easier, if one knows that H is closed in $\mathcal{PT}(G)$. If $H \leq G$, define

$$H^* = \bigcap \{K \mid H \leq K \leq G, \mid G:K \mid <\infty\}$$
 - closure of H .

Then $H = H^*$ iff H is separable.

G is residually finite (RF) if $\{1\}$ is separable. G is LERF if every f.g. subgroup is closed in $\mathcal{P}\mathcal{T}(G)$.

The profinite topology

Open Questions

Engulfing
Generalization to hyp. groups
Main Results
Proof in a special case

Let G be a group. Consider the cosets to finite index normal subgroups as basic open subsets of G. Thus one obtains the profinite topology $\mathcal{PT}(G)$.

Studying the structure of a given subgroup $H \leq G$ is much easier, if one knows that H is closed in $\mathcal{PT}(G)$. If $H \leq G$, define

$$H^* = \bigcap \{K \mid H \leq K \leq G, \mid G:K \mid <\infty\}$$
 - closure of H .

Then $H = H^*$ iff H is separable.

G is residually finite (RF) if $\{1\}$ is separable. G is LERF if every f.g. subgroup is closed in $\mathcal{P}\mathcal{T}(G)$.

Known examples of LERF groups include free groups, surface groups and fundamental groups of certain 3-manifolds.

The profinite topology

Engulfing
Generalization to hyp. groups
Main Results
Proof in a special case
Open Questions

Engulfing

In order to study separability properties of 3-manifold groups, D. Long gave the following definition:

Def. $H \subseteq G$ is engulfed if $\exists K \subseteq G$ such that $H \leq K$ and $|G:K| < \infty$.

The profinite topology

Engulfing

Generalization to hyp. groups Main Results Proof in a special case Open Questions

Engulfing

In order to study separability properties of 3-manifold groups, D. Long gave the following definition:

Def. $H \subsetneq G$ is engulfed if $\exists K \subsetneq G$ such that $H \leq K$ and $|G:K| < \infty$.

Thm.(Long, 1988). Let G be a fundamental group of a closed hyp. 3-manifold. Suppose that G engulfs every f.g. $M \leq G$ with $\Lambda(M) \subsetneq S^2_{\infty}$. Then $\forall H \leq_{g.f.} G$ one has $|H^*: H| < \infty$.

The profinite topology

Engulfing

Generalization to hyp. groups
Main Results
Proof in a special case
Open Questions

Engulfing

In order to study separability properties of 3-manifold groups, D. Long gave the following definition:

Def. $H \subsetneq G$ is engulfed if $\exists K \subsetneq G$ such that $H \leq K$ and $|G:K| < \infty$.

Thm.(Long, 1988). Let G be a fundamental group of a closed hyp. 3-manifold. Suppose that G engulfs every f.g. $M \leq G$ with $\Lambda(M) \subsetneq S^2_{\infty}$. Then $\forall H \leq_{g.f.} G$ one has $|H^*: H| < \infty$.

Motivating the above result, Long noted that proving that a f.g. subgroup is engulfed may be much easier than showing that it is separable.

The profinite topology

Engulfing

Generalization to hyp. groups
Main Results
Proof in a special case
Open Questions

Assume, now, that G is word hyperbolic in the sense of Gromov and ∂G is the visual boundary of G.

The profinite topology Engulfing

Generalization to hyp. groups

Main Results

Assume, now, that G is word hyperbolic in the sense of Gromov and ∂G is the visual boundary of G.

Thm. A (Niblo-Williams, 2002). Suppose that G engulfs every f.g. free subgroup F with $\Lambda(F) \subsetneq \partial G$. Then $\bigcap \{K \mid |G:K| < \infty\}$ is finite. If G is torsion-free then it is residually finite.

The profinite topology Engulfing

Generalization to hyp. groups

Assume, now, that G is word hyperbolic in the sense of Gromov and ∂G is the visual boundary of G.

Thm. A (Niblo-Williams, 2002). Suppose that G engulfs every f.g. free subgroup F with $\Lambda(F) \subsetneq \partial G$. Then $\bigcap \{K \mid |G:K| < \infty\}$ is finite. If G is torsion-free then it is residually finite.

Def. A subset $Q \subset G$ is called quasiconvex if $\exists \varepsilon \geq 0$ such that $\forall x, y \in Q$, $[x, y] \subset \mathcal{N}_{\varepsilon}(Q)$ in the Cayley graph of G.

The profinite topology Engulfing

Generalization to hyp. groups

Assume, now, that G is word hyperbolic in the sense of Gromov and ∂G is the visual boundary of G.

Thm. A (Niblo-Williams, 2002). Suppose that G engulfs every f.g. free subgroup F with $\Lambda(F) \subsetneq \partial G$. Then $\bigcap \{K \mid |G:K| < \infty\}$ is finite. If G is torsion-free then it is residually finite.

Def. A subset $Q \subset G$ is called quasiconvex if $\exists \varepsilon \geq 0$ such that $\forall x, y \in Q$, $[x, y] \subset \mathcal{N}_{\varepsilon}(Q)$ in the Cayley graph of G.

Thm. B (Niblo-Williams, 2002). If G engulfs every f.g. subgroup M with $\Lambda(M) \subsetneq \partial G$, then $\forall H \leq_{q.c.} G$ one has $|H^*:H| < \infty$.

The profinite topology Engulfing

Generalization to hyp. groups

Assume, now, that G is word hyperbolic in the sense of Gromov and ∂G is the visual boundary of G.

Thm. A (Niblo-Williams, 2002). Suppose that G engulfs every f.g. free subgroup F with $\Lambda(F) \subsetneq \partial G$. Then $\bigcap \{K \mid |G:K| < \infty\}$ is finite. If G is torsion-free then it is residually finite.

Def. A subset $Q \subset G$ is called quasiconvex if $\exists \ \varepsilon \geq 0$ such that $\forall \ x,y \in Q, \ [x,y] \subset \mathcal{N}_{\varepsilon}(Q)$ in the Cayley graph of G.

Thm. B (Niblo-Williams, 2002). If G engulfs every f.g. subgroup M with $\Lambda(M) \subsetneq \partial G$, then $\forall H \leq_{q.c.} G$ one has $|H^*:H| < \infty$.

Remark. It is easy to construct a non-q.c. sbgp. H such that $|G:H|=\infty$ and $H^*=G$.

The profinite topology Engulfing

Generalization to hyp. groups

Consider the following three properties of a hyp. gp. G:

The profinite topology
Engulfing

Generalization to hyp. groups

Main Results

Consider the following three properties of a hyp. gp. G:

(FEP) Each proper free q.c. sbgp. of rank s is engulfed (where s = rank(G)).

The profinite topology
Engulfing
Generalization to hyp. groups

Main Results

Consider the following three properties of a hyp. gp. *G*:

(FEP) Each proper free q.c. sbgp. of rank s is engulfed (where s = rank(G)).

(EP) Each proper q.c. sbgp. is engulfed.

The profinite topology
Engulfing
Generalization to hyp. groups

Main Results

Consider the following three properties of a hyp. gp. *G*:

(FEP) Each proper free q.c. sbgp. of rank s is engulfed (where s = rank(G)).

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in $\mathcal{PT}(G)$.

The profinite topology
Engulfing
Generalization to hyp. groups

Main Results

Consider the following three properties of a hyp. gp. *G*:

(FEP) Each proper free q.c. sbgp. of rank s is engulfed (where s = rank(G)).

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in $\mathcal{PT}(G)$.

Thm. 1 (M., 2005). FEP $\Rightarrow \bigcap \{K \mid |G:K| < \infty\}$ is finite. If G is torsion-free (TF) then it is residually finite (RF).

The profinite topology
Engulfing
Generalization to hyp. groups

Main Results

Consider the following three properties of a hyp. gp. G:

(FEP) Each proper free q.c. sbgp. of rank s is engulfed (where s = rank(G)).

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in $\mathcal{PT}(G)$.

Thm. 1 (M., 2005). FEP $\Rightarrow \bigcap \{K \mid |G:K| < \infty\}$ is finite. If G is torsion-free (TF) then it is residually finite (RF).

Thm. 2 (M., 2005). EP $\Rightarrow \forall H \leq_{q.c.} G$ one has $|H^*:H| < \infty$.

The profinite topology
Engulfing
Generalization to hyp. groups

Main Results

Consider the following three properties of a hyp. gp. G:

(FEP) Each proper free q.c. sbgp. of rank s is engulfed (where s = rank(G)).

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in $\mathcal{PT}(G)$.

Thm. 1 (M., 2005). FEP $\Rightarrow \bigcap \{K \mid |G:K| < \infty\}$ is finite. If G is torsion-free (TF) then it is residually finite (RF).

Thm. 2 (M., 2005). EP $\Rightarrow \forall H \leq_{q.c.} G$ one has $|H^*:H| < \infty$.

Thm. 3 (M., 2005). EP & RF \Rightarrow GFERF.

The profinite topology
Engulfing
Generalization to hyp. groups

Main Results

Consider the following three properties of a hyp. gp. *G*:

(FEP) Each proper free q.c. sbgp. of rank s is engulfed (where s = rank(G)).

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in $\mathcal{PT}(G)$.

Thm. 1 (M., 2005). FEP $\Rightarrow \bigcap \{K \mid |G:K| < \infty\}$ is finite. If G is torsion-free (TF) then it is residually finite (RF).

Thm. 2 (M., 2005). EP $\Rightarrow \forall H \leq_{q.c.} G$ one has $|H^*:H| < \infty$.

Thm. 3 (M., 2005). EP & RF \Rightarrow GFERF.

Cor. 1 (M., 2005). EP & TF \Rightarrow GFERF.

The profinite topology
Engulfing
Generalization to hyp. groups

Main Results

Consider the following three properties of a hyp. gp. *G*:

(FEP) Each proper free q.c. sbgp. of rank s is engulfed (where s = rank(G)).

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in $\mathcal{PT}(G)$.

Thm. 1 (M., 2005). FEP $\Rightarrow \bigcap \{K \mid |G:K| < \infty\}$ is finite. If G is torsion-free (TF) then it is residually finite (RF).

Thm. 2 (M., 2005). EP $\Rightarrow \forall H \leq_{q.c.} G$ one has $|H^*:H| < \infty$.

Thm. 3 (M., 2005). EP & RF \Rightarrow GFERF.

Cor. 2 (M., 2005). EP $\Rightarrow \forall H \leq_{q.c.} G, H^* = HQ$ where $Q = \bigcap \{K \mid |G:K| < \infty \}.$

The profinite topology
Engulfing
Generalization to hyp. groups

Main Results

Thm. 2. EP $\Rightarrow \forall H \leq_{q.c.} G$ one has $|H^*:H| < \infty$.

Cor. 1. EP & TF \Rightarrow GFERF.

The profinite topology
Engulfing
Generalization to hyp. groups
Main Results

Proof in a special case

Thm. 2. EP $\Rightarrow \forall H \leq_{q.c.} G$ one has $|H^*:H| < \infty$.

Cor. 1. EP & TF \Rightarrow GFERF.

Proof of Thm. 2 \Rightarrow Cor. 1. Assume $G \vDash$ (EP & TF). Let $H \leq_{q.c.} G$, $|G:H| = \infty$ and suppose that $H \nsubseteq H^*$.

The profinite topology
Engulfing
Generalization to hyp. groups
Main Results

Proof in a special case

Thm. 2. EP $\Rightarrow \forall H \leq_{q.c.} G$ one has $|H^*:H| < \infty$.

Cor. 1. EP & TF \Rightarrow GFERF.

Proof of Thm. 2 \Rightarrow Cor. 1. Assume $G \models$ (EP & TF). Let $H \leq_{q.c.} G$, $|G:H| = \infty$ and suppose that $H \nsubseteq H^*$.

Thm. $2 \Rightarrow |H^*: H| < \infty$, hence H^* is also q.c.

The profinite topology
Engulfing
Generalization to hyp. groups
Main Results

Proof in a special case

Thm. 2. EP $\Rightarrow \forall H \leq_{q.c.} G$ one has $|H^*:H| < \infty$.

Cor. 1. EP & TF \Rightarrow GFERF.

Proof of Thm. 2 \Rightarrow Cor. 1. Assume $G \vDash$ (EP & TF). Let $H \leq_{q.c.} G$, $|G:H| = \infty$ and suppose that $H \nsubseteq H^*$.

Thm. $2 \Rightarrow |H^*:H| < \infty$, hence H^* is also q.c.

G. Arzhantseva (2001): $\exists g \in G \text{ s.t. } B = \langle g, H^* \rangle \cong \langle g \rangle * H^*$ and $A = \langle g, H \rangle$ is q.c. in G. In particular, $|B : A| = \infty$.

The profinite topology
Engulfing
Generalization to hyp. groups
Main Results

Proof in a special case

Thm. 2. EP $\Rightarrow \forall H \leq_{q.c.} G$ one has $|H^*:H| < \infty$.

Cor. 1. EP & TF \Rightarrow GFERF.

Proof of Thm. 2 \Rightarrow Cor. 1. Assume $G \models$ (EP & TF). Let $H \leq_{q.c.} G$, $|G:H| = \infty$ and suppose that $H \nsubseteq H^*$.

Thm. $2 \Rightarrow |H^*:H| < \infty$, hence H^* is also q.c.

G. Arzhantseva (2001): $\exists g \in G \text{ s.t. } B = \langle g, H^* \rangle \cong \langle g \rangle * H^*$ and $A = \langle g, H \rangle$ is q.c. in G. In particular, $|B : A| = \infty$.

Thm. 2 \Rightarrow $|A^*:A|<\infty$. Evidently, $B\leq A^*$, thus $|B:A|<\infty$ – a contradiction. \square

The profinite topology
Engulfing
Generalization to hyp. groups
Main Results

Proof in a special case

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in $\mathcal{PT}(G)$.

The profinite topology
Engulfing
Generalization to hyp. groups

Main Results
Proof in a special case

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in $\mathcal{PT}(G)$.

Q.1. If $G \models \mathsf{EP}$, is it true that $G * \mathbb{Z} \models \mathsf{EP}$?

The positive answer would show that $EP \Rightarrow RF$.

The profinite topology
Engulfing
Generalization to hyp. groups
Main Results

Proof in a special case

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in $\mathcal{PT}(G)$.

Q.1. If $G \models \mathsf{EP}$, is it true that $G * \mathbb{Z} \models \mathsf{EP}$?

The positive answer would show that $EP \Rightarrow RF$.

Q.2. Does there exists a hyp. gp. G which is not GFERF?

The profinite topology
Engulfing
Generalization to hyp. groups
Main Results

Proof in a special case

(EP) Each proper q.c. sbgp. is engulfed.

(GFERF) Each q.c. sbgp. is closed in $\mathcal{PT}(G)$.

Q.1. If $G \models \mathsf{EP}$, is it true that $G * \mathbb{Z} \models \mathsf{EP}$?

The positive answer would show that $EP \Rightarrow RF$.

- Q.2. Does there exists a hyp. gp. G which is not GFERF?
- Q.3. Let G be a hyperbolic mapping torus of a free group, i.e.,

$$G = HNN_{\varphi}(F(X))$$
 where $\varphi : F(X) \hookrightarrow F(X)$.

Does G have EP?

The profinite topology
Engulfing
Generalization to hyp. groups
Main Results

Proof in a special case