ON RESIDUAL PROPERTIES OF WORD HYPERBOLIC GROUPS

ASHOT MINASYAN

ABSTRACT. For a fixed word hyperbolic group we compare different residual properties related to quasiconvex subgroups.

1. Introduction

Any group G can be equipped with a profinite topology $\mathcal{PT}(G)$, whose basic open sets are cosets to normal finite index subgroups. It is easy to see that the group operations are continuous in $\mathcal{PT}(G)$. The group is residually finite if and only if the profinite topology is Hausdorff.

A subgroup $H \leq G$ is closed in $\mathcal{PT}(G)$ if and only if it is equal to an intersection of finite index subgroups; equivalently, for any element $g \notin H$ there exists a homomorphism φ from G to a finite group L such that $\varphi(g) \notin \varphi(H)$. In this case the subgroup H is called G-separable.

The profinite closure of a subgroup $H \leq G$, i.e., the smallest closed subset containing H, is equal to the intersection of all finite index subgroups K of G such that $H \leq K$.

A group G is said to be LERF if every finitely generated subgroup is closed in $\mathcal{PT}(G)$. The class of all LERF groups includes free groups [6], surface groups [20] and fundamental groups of certain 3-manifolds [20], [3].

Let G be a (word) hyperbolic group with a finite symmetrized generating set \mathcal{A} and let $\Gamma(G,\mathcal{A})$ be the corresponding Cayley graph of G. A subset $Q\subseteq G$ is said to be quasiconvex if there exists a constant $\eta\geq 0$ such that for any pair of elements $u,v\in Q$ and any geodesic segment p connecting u and v, p belongs to a closed η -neighborhood of the subset Q in $\Gamma(G,\mathcal{A})$. Quasiconvex subgroups are precisely those finitely generated subgroups which are embedded in G without distortion [10, Lemma 1.6].

As it was noted in [13], in the context of word hyperbolic groups instead of studying LERF-groups it makes sense to study GFERF-groups. A hyperbolic group is called GFERF if each quasiconvex subgroup is closed in $\mathcal{PT}(G)$. Thus, within the class of hyperbolic groups, the notion of GFERF is more general than LERF: every LERF hyperbolic group is GFERF but not vice versa.

Unfortunately, it is absolutely unclear how to decide if a random word hyperbolic group is GFERF (or LERF). With this purpose, D. Long [8] and, later, G. Niblo and B. Williams [16] suggested to utilize the *engulfing* property. They say that a

²⁰⁰⁰ Mathematics Subject Classification. Primary 20F67, Secondary 20E26.

Key words and phrases. Word Hyperbolic Groups, Profinite Topology, Engulfing, GFERF. This work was partially supported by the NSF grant DMS #0245600 of A. Ol'shanskii and M. Sapir.

subgroup $H \leq G$ is engulfed if it is contained in a proper finite index subgroup of G.

The author was mainly interested in the following two theorems established by Niblo and Williams in 2002:

Theorem A. ([16, Thm. 4.1]) Let G be a word hyperbolic group and suppose that G engulfs every finitely generated free subgroup with limit set a proper subset of the boundary of G. Then the intersection of all finite index subgroups of G is finite. If G is torsion-free then it is residually finite.

Theorem B. ([16, Thm. 5.2]) Let G be a word hyperbolic group which engulfs every finitely generated subgroup K such that the limit set $\Lambda(K)$ is a proper subset of the boundary of G. Then every quasiconvex subgroup of G has a finite index in its profinite closure in G.

The main goal of this paper is to generalize Theorems A and B by weakening their assumptions and, in certain situations, strengthening their conclusions.

In a hyperbolic group G the structure of a distorted subgroup can be very complicated. Thus, the basic idea is to use assumptions which concern only quasiconvex subgroups. We prove the following results in Section 5:

Theorem 1. Let G be a hyperbolic group with a generating set of cardinality $s \in \mathbb{N}$. Suppose that each proper free quasiconvex subgroup of rank s is engulfed in G. Then the intersection of all finite index subgroups of G is finite. If G is torsion-free then it is residually finite.

Theorem 2. Suppose G is a hyperbolic group which engulfs each proper quasiconvex subgroup. Let H be an arbitrary quasiconvex subgroup of G. Then H has a finite index in its profinite closure K. Moreover, K = HQ where Q is the intersection of all finite index subgroups of G.

The assumptions of Theorems 1 and 2 are, indeed, less restrictive than the assumptions of Theorems A and B, because if H is a quasiconvex subgroup of a hyperbolic group G with $|G:H|=\infty$ then the limit set $\Lambda(H)$ is a proper subset of ∂G ([22, Thm. 4], [14, Lemma 8.2]).

In the residually finite case Theorem 2 can be reformulated as follows:

Theorem 3. Let G be a residually finite hyperbolic group where every proper quasiconvex subgroup is engulfed. Then G is GFERF.

Combining together the claims of Theorems 1 and 3 one obtains

Corollary 1. Let G be a torsion-free hyperbolic group where each proper quasiconvex subgroup is engulfed. Then G is GFERF.

N. Romanovskii [19] and, independently, R. Burns [2] showed that a free product of two LERF groups is again a LERF group. We suggest yet another way for constructing GFERF groups by proving a similar result for them (see Section 6):

Theorem 4. Suppose G_1 and G_2 are GFERF hyperbolic groups. Then the free product $G = G_1 * G_2$ is also a GFERF hyperbolic group.

Acknowledgements

I would like to thank Dr. Alexander Ol'shanskii for useful discussions and Dr. Graham Niblo for referring me to his paper [16].

2. Preliminaries

Let G be a group with a finite symmetrized generating set \mathcal{A} . Naturally, this generating set gives rise to a word length function $|g|_G$ for every element $g \in G$. The (left-invariant) word metric $d: G \times G \to \mathbb{N} \cup \{0\}$ is defined by the formula $d(x,y) = |x^{-1}y|_G$ for any $x,y \in G$. This metric can be canonically extended to the Cayley graph $\Gamma(G,\mathcal{A})$ by making each edge isometric to the interval $[0,1] \subset \mathbb{R}$.

For any three points $x, y, w \in \Gamma(G, A)$, the *Gromov product* of x and y with respect to w is defined as

$$(x|y)_w \stackrel{def}{=} \frac{1}{2} \Big(d(x,w) + d(y,w) - d(x,y) \Big).$$

Since the metric is left-invariant, for arbitrary $x, y, w \in G$ we have

$$(x|y)_w = (w^{-1}x|w^{-1}y)_{1_G}.$$

The group G is called (word) hyperbolic according to M. Gromov [5] if there exists $\delta \geq 0$ such that for any $x, y, z, w \in \Gamma(G, A)$ their Gromov products satisfy

$$(x|y)_w \ge \min\{(x|z)_w, (y|z)_w\} - \delta.$$

Equivalently, G is hyperbolic if there exists $\delta \geq 0$ such that each geodesic triangle Δ in $\Gamma(G, \mathcal{A})$ is δ -slim, i.e., every side of Δ is contained an a δ -neighborhood of the two other sides (see [1]).

From now on we will assume that G is a hyperbolic group and the constant δ is large enough so that it satisfies both of the definitions above.

For any two points $x,y \in \Gamma(G,\mathcal{A})$ we fix a geodesic path between them and denote it by [x,y]. Let p be a path in the Cayley graph of G. Then p_-, p_+ will denote the startpoint and the endpoint of p, ||p|| – its length; lab(p), as usual, will mean the word in the alphabet \mathcal{A} written on p. $elem(p) \in G$ will denote the element of the group G represented by the word lab(p). If W is a word in the \mathcal{A} , elem(W) will denote the corresponding element of the group G. For a subset $A \subset \Gamma(G, \mathcal{A})$ its closed ε -neighborhood will be denoted by $\mathcal{O}_{\varepsilon}(A)$.

The δ -slimness of geodesic triangles implies 2δ -slimness of all geodesic quadrangles abcd in $\Gamma(G, \mathcal{A})$:

$$[a,b] \subset \mathcal{O}_{2\delta}([b,c] \cup [c,d] \cup [a,d]).$$

A path q is called (λ, c) - quasigeodesic if there exist $0 < \lambda \le 1$, $c \ge 0$, such that for any subpath p of q the inequality $\lambda \|p\| - c \le d(p_-, p_+)$ holds. A word W is said to be (λ, c) -quasigeodesic if some (equivalently, every) path q in $\Gamma(G, \mathcal{A})$ labelled by W is (λ, c) -quasigeodesic.

Lemma 2.1. ([4, 5.6,5.11],[1, 3.3]) There is a constant $\nu = \nu(\delta, \lambda, c)$ such that for any (λ, c) -quasigeodesic path p in $\Gamma(G, A)$ and a geodesic q with $p_- = q_-$, $p_+ = q_+$, one has $p \subset \mathcal{O}_{\nu}(q)$ and $q \subset \mathcal{O}_{\nu}(p)$.

Lemma 2.2. ([14, Lemma 4.1]) Consider a geodesic quadrangle $x_1x_2x_3x_4$ in the Cayley graph $\Gamma(G, \mathcal{A})$ with $d(x_2, x_3) > d(x_1, x_2) + d(x_3, x_4)$. Then there are points $u, v \in [x_2, x_3]$ such that $d(x_2, u) \leq d(x_1, x_2)$, $d(v, x_3) \leq d(x_3, x_4)$ and the geodesic subsegment [u, v] of $[x_2, x_3]$ lies 2δ -close to the side $[x_1, x_4]$.

If $x, g \in G$, we define $x^g = gxg^{-1}$. For a subset A of the group G, $A^g = gAg^{-1}$, and the notation A^G will be used to denote the subset $\{gag^{-1} \mid a \in A, g \in G\} \subset G$.

Remark 2.1. [10, Remark 2.2] Let $Q \subseteq G$ be quasiconvex, $g \in G$. Then the subsets gQ, Qg and gQg^{-1} are quasiconvex as well.

Thus, a conjugate of a quasiconvex subgroup in a hyperbolic group is quasiconvex itself. Another important property of hyperbolic groups states that any cyclic subgroup is quasiconvex (see [1], for instance).

In this paper we will also use the concept of *Gromov boundary* of a hyperbolic group G (for a detailed theory the reader is referred to the corresponding chapters in [4] or [1]).) A sequence $(x_i)_{i\in\mathbb{N}}$ of elements of the group G is said to be *converging to infinity* if

$$\lim_{i,j\to\infty} (x_i|x_j)_{1_G} = \infty.$$

Two sequences $(x_i)_{i\in\mathbb{N}}, (y_j)_{i\in\mathbb{N}}$ converging to infinity are said to be equivalent if

$$\lim_{i \to \infty} (x_i | y_i)_{1_G} = \infty.$$

The points of the boundary ∂G are identified with the equivalence classes of sequences converging to infinity. It is easy to see that this definition does not depend on the choice of a basepoint: instead of 1_G one could use any fixed point p of $\Gamma(G, \mathcal{A})$ (see [1]). If α is the equivalence class of $(x_i)_{i \in \mathbb{N}}$, we will write $\lim_{i \to \infty} x_i = \alpha$.

The space ∂G can be topologized so that it becomes compact, Hausdorff and metrizable (see [1],[4]).

Left multiplication by an element of the group induces a homeomorphic action of G on its boundary: for any $g \in G$ and $[(x_i)_{i \in \mathbb{N}}] \in \partial G$ set

$$g \circ [(x_i)_{i \in \mathbb{N}}] \stackrel{def}{=} [(gx_i)_{i \in \mathbb{N}}] \in \partial G.$$

If $g \in G$ is an element of infinite order then the sequences $(g^i)_{i \in \mathbb{N}}$ and $(g^{-i})_{i \in \mathbb{N}}$ converge to infinity and we will use the notation

$$\lim_{i \to \infty} g^i = g^{\infty} \in \partial G, \ \lim_{i \to \infty} g^{-i} = g^{-\infty} \in \partial G.$$

For a subset $A \subseteq G$ the *limit set* $\Lambda(A)$ of A is the collection of the points $\alpha \in \partial G$ that are limits of sequences (converging to infinity) from A.

Let us recall an auxiliary binary relation defined between subsets of an arbitrary group G in [14]: suppose $A, B \subseteq G$, we will write $A \leq B$ if and only if there exist elements $x_1, \ldots, x_n \in G$ such that

$$A \subseteq Bx_1 \cup Bx_2 \cup \cdots \cup Bx_n$$
.

It is not difficult to see that the relation " \preceq " is transitive and for any $g \in G$, $A \preceq B$ implies $gA \preceq gB$.

Lemma 2.3. ([14, Lemma 2.1]) Let A, B be subgroups of G. Then $A \leq B$ if and only if the index $|A:(A \cap B)|$ is finite.

The basic properties of limit sets are described in the following statement:

Lemma 2.4. ([7],[22],[14, Lemma 6.2]) Suppose A,B are arbitrary subsets of G, $g \in G$. Then

- (a) $\Lambda(A) = \emptyset$ if and only if A is finite;
- (b) $\Lambda(A)$ is a closed subset of the boundary ∂G ;
- (c) $\Lambda(A \cup B) = \Lambda(A) \cup \Lambda(B)$;
- (d) $\Lambda(Ag) = \Lambda(A), g \circ \Lambda(A) = \Lambda(gA);$
- (e) if $A \leq B$ then $\Lambda(A) \subseteq \Lambda(B)$.

The following property of limit sets of quasiconvex subgroups was first proved by E. Swenson:

Lemma 2.5. ([22, Thm. 8], [11, Lemma 9.1]) Let A, B be quasiconvex subgroups of a hyperbolic group G. Then $\Lambda(A) \cap \Lambda(B) = \Lambda(A \cap B)$ in ∂G .

3. Auxiliary Facts

Lemma 3.1. Assume H is an η -quasiconvex subgroup of a δ -hyperbolic group G, X is a word over A representing an element of infinite order in G, $0 < \lambda \le 1$ and $c \ge 0$. Let $\nu = \nu(\delta, \lambda, c)$ be the constant given by Lemma 2.1. There exists a number $N = N(\delta, \eta, \nu, G) \in \mathbb{N}$ such that for any $m \in \mathbb{N}$ the following property holds.

If a word $W \equiv U_1 X^n U_2$ is (λ, c) -quasigeodesic and satisfies $||U_1||, ||U_2|| > (m + \nu + c)/\lambda$, $n \geq N$ and $elem(V_1 W V_2) \in H$ for some words V_1, V_2 with $||V_1||, ||V_2|| \leq m$, then there exist $k \in \mathbb{N}$ and $a \in G$ such that $elem(X^k) \in H^a$ and $|a|_G \leq 2\delta + \nu + \eta$.

Proof. Consider a path q in $\Gamma(G, \mathcal{A})$ starting at 1_G and labelled by V_1WV_2 . By our assumptions, $q_+ \in H$. Let p and r be its (λ, c) -quasigeodesic subpaths with $lab(p) \equiv W$ and $lab(r) \equiv X^n$ respectively. Choose an arbitrary *phase* vertex $u \in r$ such that the subpath of r from r_- to u is labelled by some power of X.

According to Lemma 2.1 there is $v \in [p_-, p_+]$ satisfying $d(u, v) \leq \nu$. Using the assumptions and the triangle inequality one can achieve

$$d(p_-, v) \ge d(p_-, u) - d(u, v) \ge \lambda ||U_1|| - c - \nu > m$$
, and $d(p_+, v) \ge d(p_+, u) - d(u, v) \ge \lambda ||U_2|| - c - \nu > m$.

Hence, by Lemma 2.2, $v \in \mathcal{O}_{2\delta}([1_G, q_+])$.

Thus,

$$u \in \mathcal{O}_{2\delta+\nu}([1_G, q_+]) \subset \mathcal{O}_{2\delta+\nu+\eta}(H),$$

i.e., there is an element $a = a(u) \in G$ such that $|a|_G \leq 2\delta + \nu + \eta$ and $u \in Ha$.

Now, since the alphabet \mathcal{A} is finite, there are only finitely many elements in G having length at most $(2\delta + \nu + \eta)$. Hence, if n is large enough, there should be two different phase vertices $u_1, u_2 \in r$ with $a(u_1) = a(u_2) = a$. By the construction,

$$u_1^{-1}u_2 = elem(X^k) \in a^{-1}Ha$$

for some positive integer k (X^k is a label of the segment of r from u_1 to u_2 , provided these points are chosen in a correct order). Q.e.d.

Lemma 3.2. Assume G is a hyperbolic group and $H \leq G$ is a quasiconvex subgroup. If $g \in G$ and $gH \leq H$, then $H \leq gH$.

Proof. If H is finite, the statement is trivial. Our assumptions immediately imply

$$g^{k-1}H \leq g^{k-2}H \leq \cdots \leq gH \leq H$$

for all $k \in \mathbb{N}$. Hence,

$$(1) g^{k-1}H \leq H.$$

If g has order $k \in \mathbb{N}$ in the group G, then to achieve the desired result it is enough to multiply both sides of the above formula by g.

Thus, we can further assume that H is infinite and the element g has infinite order. Therefore, H has at least one limit point $\alpha \in \Lambda(H)$. Observe that (1) implies

$$g^n \circ \Lambda(H) = \Lambda(g^n H) \subseteq \Lambda(H),$$

thus $g^n \circ \alpha \in \Lambda(H)$ for all $n \in \mathbb{N}$.

If $\alpha \neq g^{-\infty}$ in ∂G , it is well known (see, for instance, [4, 8.16]) that the sequence $(g^n \circ \alpha)_{n \in \mathbb{N}}$ converges to g^{∞} . Since $\Lambda(H)$ is a closed subset of the boundary ∂G , in either case we achieve

$$\Lambda(\langle g \rangle_{\infty}) = \{ g^{\infty}, g^{-\infty} \} \cap \Lambda(H) \neq \emptyset.$$

By Lemma 2.5, the latter implies $g^k \in H$ for some $k \in \mathbb{N}$. Combining this fact with (1) we get $H = g^k H \leq gH$, which concludes the proof.

The previous lemma has an interesting corollary:

Lemma 3.3. Suppose H, K are subgroups of a hyperbolic group G such that $H \leq K$, $|K:H| = \infty$ and H is quasiconvex. Then $|K:(K \cap H^g)| = \infty$ for any $g \in G$.

Proof. If $|K:(K\cap H^g)|<\infty$ for some $g\in G$ then $H\preceq K\preceq gHg^{-1}\preceq gH$ according to Lemma 2.3. Consequently $g^{-1}H\preceq H$. Hence $H\preceq g^{-1}H$ by Lemma 3.2, implying $gHg^{-1}\preceq gH\preceq H$. But the latter leads to $K\preceq H$ which contradicts the condition $|K:H|=\infty$ (see Lemma 2.3).

If G is a hyperbolic group, each element $g \in G$ of infinite order belongs to a unique maximal elementary subgroup E(g). By [17, Lemmas 1.16, 1.17] it has the following description:

(2)
$$E(g) = \{x \in G \mid xg^kx^{-1} = g^l \text{ for some } k, l \in \mathbb{Z} \setminus \{0\} \} = \{x \in G \mid xg^nx^{-1} = g^{\pm n} \text{ for some } n \in \mathbb{N} \}.$$

Note that the subgroup $E^+(g) \stackrel{def}{=} \{ x \in G \mid xg^nx^{-1} = g^n \text{ for some } n \in \mathbb{N} \}$ has index at most 2 in E(g).

Let W_1, W_2, \ldots, W_l be words in \mathcal{A} representing elements g_1, g_2, \ldots, g_l of infinite order, where $E(g_i) \neq E(g_j)$ for $i \neq j$. The following lemma will be useful:

Lemma 3.4. ([17, Lemma 2.3]) There exist constants $\lambda = \lambda(W_1, W_2, \dots, W_l) > 0$, $c = c(W_1, W_2, \dots, W_l) \geq 0$ and $N = N(W_1, W_2, \dots, W_l) > 0$ such that any path p in the Cayley graph $\Gamma(G, \mathcal{A})$ with label $W_{i_1}^{m_1} W_{i_2}^{m_2} \dots W_{i_s}^{m_s}$ is (λ, c) -quasigeodesic if $i_k \neq i_{k+1}$ for $k = 1, 2, \dots, s-1$, and $|m_k| > N$ for $k = 2, 3, \dots, s-1$ (each i_k belongs to $\{1, \dots, l\}$).

For a subgroup H of G denote by H^0 the set of elements of infinite order in H; if $A \subseteq G$, the subgroup $C_H(A) = \{h \in H \mid g^h = g, \forall g \in A\}$ is the *centralizer* of A in H.

Set $E(H) = \bigcap_{x \in H^0} E(x)$. If H is a non-elementary subgroup of G, then E(H) is the unique maximal finite subgroup of G normalized by H ([17, Prop. 1]).

If $g \in G^0$, T(g) will be used to denote the set of elements of finite order in the subgroup E(g).

Let G be a hyperbolic group and H be its non-elementary subgroup. Recalling the definition from [17] (and using the terminology from [12]), an element $g \in H^0$ will be called H-suitable if E(H) = T(g) and

$$E(g) = E^+(g) = C_G(g) = T(g) \times \langle g \rangle.$$

In particular, if the element g is H-suitable then $g \in C_H(E(H))$.

Two elements $g, h \in G$ of infinite order are called *commensurable* if $g^k = ah^l a^{-1}$ for some non-zero integers k, l and some $a \in G$. The following important statement was proved by A. Ol'shanskii in 1993:

Lemma 3.5. ([17, Lemma 3.8]) Every non-elementary subgroup H of a hyperbolic group G contains an infinite set of pairwise non-commensurable H-suitable elements.

Suitable elements can be modified in a natural way:

Lemma 3.6. ([12, Lemma 4.3]) Let H be a non-elementary subgroup of a hyperbolic group G, and g be an H-suitable element. If $y \in C_H(E(H)) \setminus E(g)$ then there exists $N \in \mathbb{N}$ such that the element yg^n has infinite order in H and is H-suitable for every $n \geq N$.

In [14] the author studied properties of quasiconvex subgroups of infinite index and showed

Lemma 3.7. ([14, Prop. 1]) Suppose H is a quasiconvex subgroup of a hyperbolic group G and K is any subgroup of G that satisfies $|K:(K\cap H^g)|=\infty$ for all $g\in G$. Then there exists an element $x\in K$ having infinite order, such that $\langle x\rangle_{\infty}\cap H^G=\{1_G\}$.

Later we will utilize a stronger fact:

Lemma 3.8. Assume H, K are subgroups of a δ -hyperbolic group G, H is η -quasiconvex, K is non-elementary and $|K: (K \cap H^g)| = \infty$ for every $g \in G$. Then there exists a K-suitable element $g \in K$ such that $\langle y \rangle_{\infty} \cap H^G = \{1_G\}$.

Proof. Set $K' = C_K(E(K))$. Since E(K) is a finite subgroup normalized by K, we have $|K:K'| < \infty$. Therefore $|K':(K' \cap H^g)| = \infty$ for all $g \in G$. Applying Lemma 3.7, we can find an element of infinite order $x \in K'$ such that $\langle x \rangle_{\infty} \cap H^G = \{1_G\}$. By Lemma 3.5 there is a K-suitable element $z \in K$ which is non-commensurable with x, hence $\langle x \rangle_{\infty} \cap E(z) = \{1_G\}$.

Choose some words X and Z in the alphabet \mathcal{A} representing x and z respectively. Then one is able to find the numbers $\lambda = \lambda(X, Z)$, c = c(X, Z) and $N_1 = N_1(X, Z)$ from the claim of Lemma 3.4.

Define $\nu = \nu(\delta, \lambda, c)$ and $N_2 = N_2(\delta, \eta, \nu, G)$ as in Lemmas 2.1 and 3.1. Denote $N = \max\{N_1, N_2\}$ and apply Lemma 3.6 to obtain $n \geq N_1$ such that the element $y = x^N z^n \in K$ is K-suitable.

It remains to check that $\langle y \rangle_{\infty} \cap H^G = \{1_G\}$. Assume the contrary, i.e., there exist $t \in \mathbb{N}$ and $g \in G$ such that $y^t \in H^g$. Then for each $l \in \mathbb{N}$, the element $y^{tl} \in H^g$ will be represented by the (λ, c) -quasigeodesic word $W \equiv (X^N Z^n)^{tl}$. And if the number l is chosen sufficiently large (compared to $m = |g^{-1}|_G = |g|_G$), it should be possible to find a subword of the form X^N in the "middle" of W which satisfies all the assumptions of Lemma 3.1. Hence, $x^k = elem(X^k) \in H^G$ for some $k \in \mathbb{N}$. The latter contradicts to the construction of x. Thus the lemma is proved.

As usual, let G be a δ -hyperbolic group and H- its η -quasiconvex subgroup.

Lemma 3.9. Suppose the elements $x_1, x_2 \in G$ have infinite order, $E(x_1) \neq E(x_2)$, and for each i = 1, 2, satisfy $\langle x_i \rangle_{\infty} \cap H^G = \{1_G\}$. Then there exists a number $N \in \mathbb{N}$ such that for any $m, n \geq N$ the elements x_1^m, x_2^n freely generate a free subgroup F of rank 2 in G. Moreover, F is quasiconvex and $F \cap H^G = \{1_G\}$.

Proof. Choose some words X_1 and X_2 in the alphabet \mathcal{A} representing the elements x_1 and x_2 . Apply Lemma 3.4 to find the corresponding $\lambda = \lambda(X_1, X_2)$, $c = c(X_1, X_2)$ and $N_1 = N_1(X_1, X_2)$. Then one can find the constant $\nu = \nu(\delta, \lambda, c)$

from the claim of Lemma 2.1 and define $N_2 = N_2(\delta, \eta, \nu, G)$ in accordance with Lemma 3.1.

Set $N = \max\{N_1, N_2, \lfloor c/\lambda \rfloor + 1\}$. Consider arbitrary integers $m, n \geq N$ and the subgroup $F = \langle x_1^m, x_2^n \rangle \leq G$. By Lemma 3.4 any non-empty (freely) reduced word W in the generators $\{X_1^m, X_2^n\}$ is (λ, c) -quasigeodesic. Hence

$$|elem(W)|_G \ge \lambda ||W|| - c \ge \lambda N - c > 0.$$

Consequently, $elem(W) \neq 1_G$ in G, implying that F is free with the free generating set $\{x_1^m, x_2^n\}$. By the construction of ν , F will be ε -quasiconvex where

$$\varepsilon = \nu + \frac{1}{2} \max\{m \|X_1\|, n \|X_2\|\}.$$

Consider a non-empty cyclically reduced word W in the generators $\{X_1^m, X_2^n\}$. For establishing the last claim, it is sufficient to demonstrate that $elem(W) \notin H^G$. Arguing as in Lemma 3.8, suppose $elem(W) \in H^g$ for some $g \in G$. Then $(elem(W))^l \in H^g$ for every $l \in \mathbb{N}$. By choosing l sufficiently large and applying Lemma 3.1 one will obtain a contradiction with the assumption $\langle x_i \rangle_{\infty} \cap H^G = \{1_G\}$, i = 1, 2, as in Lemma 3.8. Therefore $F \cap H^G = \{1_G\}$. Q.e.d.

Corollary 2. With the assumptions of Lemma 3.8, K has a free subgroup F of rank 2 which is quasiconvex in G, E(F) = E(K) and $F \cap H^G = \{1_G\}$.

Proof. Choose a K-suitable element $x_1 \in K$ according to Lemma 3.8. Since K is non-elementary, there exists $y \in K \setminus E(x_1)$. Therefore, $x_2 \stackrel{def}{=} yx_1y^{-1} \in K^0$ and $E(x_2) \neq E(x_1)$ (as it can be seen from (2)). By the construction, $\langle x_i \rangle_{\infty} \cap H^G = \{1_G\}, i = 1, 2$. Hence the subgroup F can be found by applying Lemma 3.9. Evidently $E(K) \leq E(F)$, and $E(F) \subseteq T(x_1) = E(K)$. Thus E(F) = E(K).

4. Free products of quasiconvex subgroups

Below we will assume that G is a δ -hyperbolic group generated by a finite set \mathcal{A} . First let us recall some properties of the hyperbolic boundary.

Lemma 4.1. ([12, Lemma 2.14]) Suppose A and B are arbitrary subsets of G and $\Lambda(A) \cap \Lambda(B) = \emptyset$. Then $\sup_{a \in A, b \in B} \{(a|b)_{1_G}\} < \infty$.

Remark 4.1. Suppose $g, x \in G$ and g has infinite order. If $(x \circ \{g^{\pm \infty}\}) \cap \{g^{\pm \infty}\} \neq \emptyset$ in the boundary ∂G , then $x \in E(g)$. If $E(g) = E^+(g)$ then $g^{\infty} \notin G \circ \{g^{-\infty}\}$.

Note that $x \circ \{g^{\pm \infty}\} = \{(xgx^{-1})^{\pm \infty}\} = \Lambda(\langle xgx^{-1}\rangle) \subset \partial G$. Since any cyclic subgroup in a hyperbolic group is quasiconvex, we can apply Lemma 2.5 to show that $\langle g \rangle \cap \langle xgx^{-1} \rangle \neq \{1_G\}$. Hence $x \in E(g)$.

Let $E(g) = E^+(g)$ and suppose that $g^{\infty} = x \circ g^{-\infty}$ for some $x \in G$. Then, as we showed above, $x \in E(g) = E^+(g)$. Hence

$$x \circ g^{-\infty} = \lim_{n \to -\infty} (xgx^{-1})^n = \lim_{n \to -\infty} g^n = g^{-\infty}.$$

Thus we achieve a contradiction with the inequality $g^{\infty} \neq g^{-\infty}$.

Lemma 4.2. Let $g, x \in G$ where g has infinite order and $E(g) = E^+(g)$. Then there is $N_1 \in \mathbb{N}$ such that for every $n \geq N_1$ the element $xg^n \in G$ has infinite order.

Proof. If $x \notin E(g)$ then the claim follows by [11, Lemma 9.14].

So, assume $x \in E(g)$. Since $E(g) = E^+(g)$, the center of E(g) has finite index in it, thus E(g) is an FC-group. By B.H. Neumann's Theorem [15] the elements of finite order form a subgroup $T(g) \leq E(g)$. Therefore the cardinality of the intersection $\{xg^k \mid k \in \mathbb{Z}\} \cap T(g)$ can be at most 1. Thus $xg^n \notin T(g)$ for each sufficiently large n.

The main result of this paper is based on the following statement concerning broken lines in a δ -hyperbolic metric space:

Lemma 4.3. ([18, Lemma 21], [14, Lemma 3.5]) Let $p = [y_0, y_1, \ldots, y_n]$ be a broken line in $\Gamma(G, \mathcal{A})$ such that $||[y_{i-1}, y_i]|| > C_1 \ \forall \ i = 1, \ldots, n$, and $(y_{i-1}|y_{i+1})_{y_i} < C_0 \ \forall \ i = 1, \ldots, n-1$, where $C_0 \ge 14\delta$, $C_1 > 12(C_0 + \delta)$. Then the geodesic segment $[y_0, y_n]$ is contained in the closed 14δ -neighborhood of p and $||[y_0, y_n]|| \ge ||p||/2$.

Suppose a, b, c and d are arbitrary points in $\Gamma(G, A)$. Considering the geodesic triangle with the vertices $1_G, a$ and ab, one can observe that

$$(a|ab)_{1_G} = |a|_G - (1_G|ab)_a = |a|_G - (a^{-1}|b)_{1_G}.$$

Now, since $\Gamma(G, \mathcal{A})$ is δ -hyperbolic,

 $(3) \ (a|c)_{1_G} \geq \min\left\{(a|ab)_{1_G}, (ab|c)_{1_G}\right\} - \delta = \min\left\{|a|_G - (a^{-1}|b)_{1_G}, (ab|c)_{1_G}\right\} - \delta.$

Replacing c with cd in the above formula, we get

(4)
$$(a|cd)_{1_G} \ge \min\{|a|_G - (a^{-1}|b)_{1_G}, (ab|cd)_{1_G}\} - \delta.$$

The Gromov product is symmetric, therefore we are able to combine formulas (3) and (4) to achieve

(5)
$$(a|c)_{1_G} \ge \min\{|c|_G - (c^{-1}|d)_{1_G}, (a|cd)_{1_G}\} - \delta \ge \min\{|a|_G - (a^{-1}|b)_{1_G}, |c|_G - (c^{-1}|d)_{1_G}, (ab|cd)_{1_G}\} - 2\delta.$$

Theorem 5. Consider some elements $g_1, x_1, g_2, x_2, \ldots, g_s, x_s \in G$ and an η -quasiconvex subgroup $H \leq G$. Suppose the following three conditions are satisfied:

- g_1, \ldots, g_s have infinite order and are pairwise non-commensurable;
- $E(g_i) = E^+(g_i)$ for each i = 1, 2, ..., s;
- $E(g_i) \cap H = E(g_i) \cap x_i^{-1} H x_i = \{1_G\}$ for each i = 1, 2, ..., s.

Then there exists a number $N \in \mathbb{N}$ such that for every $n \geq N$ the elements $x_i g_i^n \in G$, $i = 1, 2, \ldots, s$, have infinite order, and the subgroup

$$M \stackrel{def}{=} \langle H, x_1 g_1^n, \dots, x_s g_s^n \rangle \leq G$$

is quasiconvex in G and isomorphic (in the canonical way) to the free product $H * \langle x_1 g_1^n \rangle * \cdots * \langle x_s g_s^n \rangle$.

Proof. Choose arbitrary elements $w_1, w_2 \in M$ and define $w = w_1^{-1} w_2 \in M$. Then this element has a presentation

(6)
$$w = h_0(x_{i_1}g_{i_1}^n)^{\epsilon_1}h_1(x_{i_2}g_{i_2}^n)^{\epsilon_2}\cdots h_{l-1}(x_{i_l}g_{i_l}^n)^{\epsilon_l}h_l,$$

where
$$h_j \in H$$
, $i_j \in \{1, ..., s\}$, $\epsilon_j \in \{1, -1\}$, $j = 1, 2, ..., l$, $l \in \mathbb{N} \cup \{0\}$.

Moreover, we can assume that the presentation (6) is reduced in the following sense: if $1 \le j \le l-1$, $i_j = i_{j+1}$ and $\epsilon_{j+1} = -\epsilon_j$ then $h_j \ne 1_G$.

Consider a geodesic broken line $[y_0, y_1, \ldots, y_{l+1}]$ in $\Gamma(G, \mathcal{A})$ with $y_0 = w_1$ and $elem([y_k, y_{k+1}]) = h_k(x_{i_{k+1}}g_{i_{k+1}}^n)^{\epsilon_{k+1}}, k = 0, 1, \ldots, l-1, elem([y_l, y_{l+1}]) = h_l$. Therefore $elem([y_0, y_{l+1}]) = w$ and $y_{l+1} = w_2$.

Now we are going to find upper bounds for the Gromov products

$$(y_{k-1}|y_{k+1})_{y_k} = (y_k^{-1}y_{k-1}|y_k^{-1}y_{k+1})_{1_G}, \ k = 1, \dots, l.$$

By the assumptions of the theorem, Lemma 2.5 implies that

$$x_i \circ g_i^{\infty} = (x_i g_i x_i^{-1})^{\infty} \notin \Lambda(H)$$
 and $g_i^{-\infty} \notin \Lambda(H)$, $i = 1, \dots, s$.

Since

$$\Lambda\left(\left\{x_{i}g_{i}^{m},g_{i}^{-m}x_{i}^{-1}\mid m\in\mathbb{N},1\leq i\leq s\right\}\right)=\left\{x_{i}\circ g_{i}^{\infty},g_{i}^{-\infty}\mid 1\leq i\leq s\right\}\subset\partial G,$$
 we are able to apply Lemma 4.1 to define

$$\alpha \stackrel{def}{=} \max \left\{ (h|x_i g_i^m)_{1_G}, (h|g_i^{-m} x_i^{-1})_{1_G} \mid h \in H, 1 \le i \le s, m \in \mathbb{N} \right\} < \infty.$$

Similarly, since g_i and g_j are non-commensurable if $i \neq j$ and $E(g_i) = E^+(g_i)$, we have (according to Lemma 2.5 and Remark 4.1)

$$G \circ \{g_i^{\pm \infty}\} \cap G \circ \{g_j^{\pm \infty}\} = \emptyset, \ G \circ \{g_i^{\infty}\} \cap G \circ \{g_i^{-\infty}\} = \emptyset, \ i, j \in \{1, \dots, s\}, i \neq j.$$

Hence, the following numbers are also finite:

$$\beta_1 \stackrel{def}{=} \max \Big\{ \Big((x_i g_i^m)^{-1} | h x_j g_j^t \Big)_{1_G}, \ \big(x_i g_i^m | h (x_j g_j^t)^{-1} \big)_{1_G} \Big|$$

$$h \in H, \ |h|_G \le 2\alpha + 2\delta, \ 1 \le i, j \le s, \ m, t \in \mathbb{N} \Big\},$$

$$\beta_2 \stackrel{def}{=} \max \Big\{ \Big(x_i g_i^m | h x_j g_j^t \Big)_{1_G}, \ \Big((x_i g_i^m)^{-1} | h (x_j g_j^t)^{-1} \Big)_{1_G} \Big|$$

$$h \in H, \ |h|_G \le 2\alpha + 2\delta, \ 1 \le i, j \le s, \ i \ne j, \ m, t \in \mathbb{N} \Big\}.$$

Note that if $h \in H \setminus \{1_G\}$ then, according to our assumptions, $x_i^{-1}hx_i \notin E(g_i)$. Therefore, $\{g_i^{\pm\infty}\} \cap (x_i^{-1}hx_i) \circ \{g_i^{\pm\infty}\} = \emptyset$ (Remark 4.1), implying $x_i \circ g_i^{\infty} \neq (hx_i) \circ g_i^{\infty}$, $i = 1, \ldots, s$. We can also use Remark 4.1 to show that $g_i^{-\infty} \neq h \circ g_i^{-\infty}$ for each i. Consequently, by Lemma 4.1,

$$\beta_{3} \overset{def}{=} \max \Big\{ \Big(x_{i} g_{i}^{m} | h x_{i} g_{i}^{t} \Big)_{1_{G}}, \ \Big((x_{i} g_{i}^{m})^{-1} | h (x_{i} g_{i}^{t})^{-1} \Big)_{1_{G}} \Big| \\ h \in H, \ |h|_{G} \leq 2\alpha + 2\delta, \ h \neq 1_{G}, \ 1 \leq i \leq s, \ m, t \in \mathbb{N} \Big\} < \infty.$$

Finally, define $\beta = \max\{\beta_1, \beta_2, \beta_3\} < \infty$,

(7)
$$C_0 = \max\{\alpha + 2\delta, \beta + \delta, 14\delta\} + 1 \text{ and } C_1 = 12(C_0 + \delta) + 1.$$

Since each g_i , $i=1,\ldots,s$, has infinite order in G there exists $N \in \mathbb{N}$ such that for any $i \in \{1,\ldots,s\}$ one has

(8)
$$|g_i^n|_G > \max\{\alpha, \beta, 2C_1\} + \alpha + |x_i|_G + 2\delta, \ \forall \ n \ge N.$$

By Lemma 4.2, without loss of generality, we can assume that the order of $x_i g_i^n$, i = 1, 2, ..., s, is infinite for every $n \ge N$. Fix an integer $n \ge N$ and choose any $k \in \{1, ..., l-1\}$. Then

$$(y_{k-1}|y_{k+1})_{y_k} = \left((x_{i_k} g_{i_k}^n)^{-\epsilon_k} h_{k-1}^{-1} \middle| h_k (x_{i_{k+1}} g_{i_{k+1}}^n)^{\epsilon_{k+1}} \right)_{1 \in \mathcal{C}}.$$

To simplify the notation, let us denote $a = (x_{i_k} g_{i_k}^n)^{-\epsilon_k}$, $b = h_{k-1}^{-1}$, $c = h_k$ and $d = (x_{i_{k+1}} g_{i_{k+1}}^n)^{\epsilon_{k+1}}$. By construction

(9)
$$(a|c)_{1_G}, (a^{-1}|b)_{1_G}, (c^{-1}|d)_{1_G} \le \alpha.$$

Now we need to consider two separate cases.

Case 1: $|h_k|_G = |c|_G \le 2\alpha + 2\delta$. Then, due to the definition of the number β , the inequality $(a|cd)_{1_G} \le \beta$ holds. Therefore, applying formulas (4) and (9) one obtains

$$\beta \ge (a|cd)_{1_G} \ge \min\left\{|a|_G - (a^{-1}|b)_{1_G}, (ab|cd)_{1_G}\right\} - \delta \ge \min\left\{|g_{i_k}^n|_G - |x_{i_k}|_G - \alpha, (ab|cd)_{1_G}\right\} - \delta.$$

By (8), $|g_{i_k}^n|_G - |x_{i_k}|_G - \alpha > \beta + \delta$, hence the above inequality implies

$$(y_{k-1}|y_{k+1})_{y_k} = (ab|cd)_{1_G} \le \beta + \delta < C_0.$$

Case 2: $|h_k|_G = |c|_G > 2\alpha + 2\delta$. Apply formulas (5) and (9) to achieve

$$\alpha \ge (a|c)_{1_G} \ge \min\{|a|_G - \alpha, |c|_G - \alpha, (ab|cd)_{1_G}\} - 2\delta.$$

Observing $|a|_G - \alpha \ge |g_{i_k}^n|_G - |x_{i_k}|_G - \alpha > \alpha + 2\delta$ and $|c|_G - \alpha > \alpha + 2\delta$, we can conclude that

$$(y_{k-1}|y_{k+1})_{y_k} = (ab|cd)_{1_G} \le \alpha + 2\delta < C_0.$$

At last, let us estimate the product $(y_{l-1}|y_{l+1})_{y_l} = ((x_{i_l}g_{i_l}^n)^{-\epsilon_k}h_{l-1}^{-1}|h_l)_{1_G}$. Denote $a = (x_{i_l}g_{i_l}^n)^{-\epsilon_k}$, $b = h_{l-1}^{-1}$ and $c = h_l$.

Using formula (3) and the definition of α one can obtain

$$\alpha \ge (a|c)_{1_G} \ge \min\{|x_{i_l}g_{i_l}^n|_G - \alpha, (ab|c)_{1_G}\} - \delta.$$

As before, the latter implies that

$$(y_{l-1}|y_{l+1})_{y_l} = (ab|c)_{1_G} \le \alpha + \delta < C_0.$$

Thus, we have shown that

(10)
$$(y_{k-1}|y_{k+1})_{y_k} < C_0 \text{ for each } k = 1, 2, \dots, l.$$

Now we need to find a lower bound for the lengths of the sides in the broken line $[y_0, y_1, \dots, y_{l+1}]$.

Let $0 \le k \le l-1$. Note that $|ab|_G \ge |b|_G - (a^{-1}|b)_{1_G}$ for any $a, b \in G$. Hence

$$||[y_k, y_{k+1}]|| = |h_k(x_{i_{k+1}}g_{i_{k+1}}^n)^{\epsilon_{k+1}}|_G \ge |(x_{i_{k+1}}g_{i_{k+1}}^n)^{\epsilon_{k+1}}|_G - (h_k^{-1}|(x_{i_{k+1}}g_{i_{k+1}}^n)^{\epsilon_{k+1}})_{1_G} \ge |g_{i_{k+1}}^n|_G - |x_{i_{k+1}}|_G - \alpha.$$

Applying inequality (8) we obtain

(11)
$$||[y_k, y_{k+1}]|| > 2C_1 \text{ if } 0 \le k \le l-1.$$

Depending on the length of the last side, $||[y_l, y_{l+1}]|| = |h_l|_G$, there can occur two different situations.

Case 1: $||[y_l, y_{l+1}]|| = |h_l|_G \leq C_1$. Then we can use inequalities (10) and (11) to apply Lemma 4.3 to the geodesic broken line $p' = [y_0, \dots, y_l]$. Hence $[y_0, y_l] \subset \mathcal{O}_{14\delta}(p')$ and $d(y_0, y_l) \geq ||p'||/2$.

Since geodesic triangles in $\Gamma(G, \mathcal{A})$ are δ -slim, we have

$$[y_0, y_{l+1}] \subset \mathcal{O}_{\delta}([y_0, y_l] \cup [y_l, y_{l+1}]) \subset \mathcal{O}_{\delta + C_1}([y_0, y_l]) \subset \mathcal{O}_{15\delta + C_1}(p').$$

Now, if $l \geq 1$ in the presentation (6), one can use (11) to obtain

$$d(y_0, y_{l+1}) \ge d(y_0, y_l) - d(y_l, y_{l+1}) \ge ||p'||/2 - C_1 \ge ||[y_0, y_1]||/2 - C_1 > 0.$$

Case 2: $||[y_l, y_{l+1}]|| = |h_l|_G > C_1$. Then we can apply Lemma 4.3 to the broken line $p = [y_0, \dots, y_l, y_{l+1}]$, thus achieving

$$[y_0, y_{l+1}] \subset \mathcal{O}_{14\delta}(p).$$

As before, if $l \geq 1$ one has

$$d(y_0, y_{l+1}) \ge ||p||/2 > 0.$$

Thus, in either case we have established the following properties:

(12)
$$[y_0, y_{l+1}] \subset \mathcal{O}_{15\delta + C_1}(p)$$
 and

$$(13) d(y_0, y_{l+1}) > 0.$$

The inequality (13) implies that $w \neq 1_G$ in the group G for any element $w \in M$ having a "reduced" presentation (6) with $l \geq 1$. Therefore

$$M \cong H * \langle x_1 g_1^n \rangle * \cdots * \langle x_s g_s^n \rangle.$$

As $n \geq N$ is fixed, one is able to define the constants

$$\zeta = \max_{1 \le i \le s} \{|x_i g_i^n|_G\} < \infty \text{ and } \varepsilon = 16\delta + C_1 + \eta + \zeta.$$

We will finish the proof by showing that $[y_0, y_{l+1}] \subset \mathcal{O}_{\varepsilon}(M)$ which implies that M is ε -quasiconvex.

Consider an arbitrary $k \in \{0, 1, ..., l\}$. Using the construction of $y_k \in M$ and ζ , and δ -hyperbolicity of the Cayley graph we achieve

$$[y_k, y_{k+1}] \subset \mathcal{O}_{\delta+\zeta}([y_k, y_k h_k]).$$

H is η -quasiconvex, therefore $[1_G, h_k] \subset \mathcal{O}_{\eta}(H)$. The metric in $\Gamma(G, \mathcal{A})$ is invariant under the action of G by left translations, consequently

$$[y_k, y_k h_k] \subset \mathcal{O}_n(y_k H) \subset \mathcal{O}_n(M).$$

Combining the latter formula with (14) leads us to

$$[y_k, y_{k+1}] \subset \mathcal{O}_{\delta+n+\zeta}(M)$$
 for each k .

Finally, an application of (12) yields

$$[y_0, y_{l+1}] \subset \mathcal{O}_{15\delta+C_1+\delta+n+\zeta}(M) = \mathcal{O}_{\varepsilon}(M),$$

as desired.

5. Hyperbolic groups with engulfing

Proof of Theorem 1. Since every elementary group is residually finite, it is sufficient to consider the case when G is non-elementary. Let x_1, \ldots, x_s be the generators of G.

Define
$$K = \bigcap_{L \leq G, |G:L| < \infty} L$$
; then K is normal in G. Suppose K is infinite. If the

subgroup K were elementary, then it would be quasiconvex (this follows directly from Lemmas 3.4 and 2.1). Hence, according to a result proved by Mihalik and Towle [9] (see also [14, Cor. 2]), it would have a finite index in G, thus the group G would also have to be elementary. Therefore K can not be elementary.

Now we can apply Lemma 3.5 to find pairwise non-commensurable K-suitable elements $g_1, \ldots, g_{s+1} \in K$. Since the trivial subgroup $H = \{1_G\} \leq G$ is quasiconvex, we can use Theorem 5 to show that the subgroups $M = \langle x_1 g_1^n, \ldots, x_s g_s^n \rangle$ and $M' = \langle x_1 g_1^n, \ldots, x_s g_s^n, g_{s+1}^n \rangle$ are free (of ranks s and (s+1) respectively) and quasiconvex in G for some sufficiently large $n \in \mathbb{N}$.

Note that M is a proper (infinite index) subgroup of G because $|M':M|=\infty$. According to our assumptions, there exists a proper finite index subgroup L in G with $M \leq L$. By the construction, $K \leq L$, thus $x_i g_i^n, g_i \in L$ for each $i=1,\ldots,s$. Consequently $x_i \in L$ for each $i=1,\ldots,s$, contradicting with properness of L.

Therefore K is finite. If G is torsion-free then K is trivial, and, thus, G is residually finite. \Box

As E(G) is the maximal finite normal subgroup in G, we obtain the following statement right away:

Corollary 3. With the assumptions of Theorem 1, suppose, in addition, that $E(G) = \{1_G\}$. Then G is residually finite.

Below it will be convenient to use the following equivalence relation between subsets of a group G defined in [14]: for any $A, B \subseteq G$ such that $A \preceq B$ and $B \preceq A$ we will write $A \approx B$.

Remark 5.1. ([14, Remark 3]) If $A, B \subseteq G$, $A \approx B$ and A is quasiconvex, then B is also quasiconvex.

In particular, if $A \leq B$ are subgroups of G and A has finite index in B then $A \approx B$. Hence A is quasiconvex if and only if B is quasiconvex.

Lemma 5.1. Let G be a residually finite hyperbolic group and let $H \leq G$ be a quasiconvex subgroup. Suppose that every proper quasiconvex subgroup of G is engulfed. Then H has a finite index in its profinite closure K in G.

Proof. Arguing by the contrary, assume that $|K:H|=\infty$. Since the group G is residually finite, any finite subset is closed in the profinite topology. Thus H is infinite; hence K is non-elementary.

Choose some generating set x_1, \ldots, x_s of the group G. Since G is residually finite, it has a finite index subgroup G_1 satisfying

(15)
$$G_1 \cap \left(E(K) \cup \bigcup_{i=1}^s x_i E(K) x_i^{-1} \right) = \{ 1_G \}.$$

Define $H_1 = H \cap G_1$; then $|H: H_1| < \infty$ and, according to Remark 5.1, H_1 is quasiconvex. The profinite closure K_1 of H_1 in G has a finite index in K, therefore K_1 is non-elementary and $|K_1: H_1| = \infty$. The definition of a finite index subgroup implies that there is $l \in \mathbb{N}$ such that $g^l \in K_1$ for each $g \in K$. Since $E(g) = E(g^l)$ for any $g \in K^0$ we have

$$E(K) \subseteq E(K_1) = \bigcap_{g \in (K_1)^0} E(g) \subseteq \bigcap_{g \in K^0} E(g^l) = \bigcap_{g \in K^0} E(g) = E(K).$$

Thus $E(K_1) = E(K)$.

By Lemma 3.3, $|K_1:(K_1\cap H_1^g)|=\infty$ for every $g\in G$ and we can use Corollary 2 to obtain a free subgroup $F\leq K_1$ of rank 2 satisfying $F\cap H_1^G=\{1_G\}$ and $E(F)=E(K_1)=E(K)$.

According to Lemma 3.5 there exist elements $g_1, \ldots, g_{s+1} \in F$ which are pairwise non-commensurable and F-suitable. Consequently $E(g_i) = \langle g_i \rangle_{\infty} \times E(K)$ and, since E(K) is finite, formula (15) implies that

$$E(g_i) \cap H_1 = E(K) \cap H_1 = \{1_G\}, i = 1, 2, \dots, s + 1, \text{ and }$$

$$E(g_i) \cap x_i^{-1} H_1 x_i = E(K) \cap x_i^{-1} H_1 x_i = \{1_G\}, \ i = 1, 2, \dots, s.$$

Now we apply Theorem 5 to find $n \in \mathbb{N}$ such that the subgroups

$$M = \langle H_1, x_1 g_1^n, \dots, x_s g_s^n \rangle$$
 and $M' = \langle H_1, x_1 g_1^n, \dots, x_s g_s^n, g_{s+1}^n \rangle$

are quasiconvex in G and $M' = M * \langle g_{s+1}^n \rangle_{\infty} \leq G$. Thus, $|M': M| = \infty$ and M is a proper subgroup of G.

The subgroup M is engulfed by our assumptions, therefore G has a proper finite index subgroup L containing M. Observe that $K_1 \leq L$ because $H_1 \leq M \leq L$, and, since $x_i g_i^n, g_i \in M \cup K_1 \subset L$, we get $x_i \in L$ for each $i = 1, \ldots, s$. The latter implies G = L – a contradiction.

We will now prove Theorem 3 which strengthens the the statement of the previous lemma.

Proof of Theorem 3. We can assume that G is non-elementary because any elementary group is LERF. Since G is residually finite, there is a finite index subgroup $G_1 \leq G$ with $G_1 \cap E(G) = \{1_G\}$.

Take an arbitrary quasiconvex subgroup $H \leq G$ and set $H_1 = H \cap G_1$. As it follows from Remark 5.1, H_1 is quasiconvex in G. Therefore, according to Lemma 5.1, H_1 has a finite index in its profinite closure K_1 in G.

If $H_1 = K_1$, i.e., H_1 is closed in the profinite topology on G, then so is H. Thus, we can suppose that $H_1 \neq K_1$. Consequently $|G: H_1| = \infty$, and thus $|G: K_1| = \infty$.

The subgroup K_1 is quasiconvex according to Remark 5.1, hence we can apply Lemma 3.8 to find a G-suitable element $g \in G$ such that $\langle g \rangle_{\infty} \cap K_1 = \{1_G\}$. Since $E(g) = \langle g \rangle \times E(G)$, E(G) is finite and $K_1 \leq G_1$, we have

$$E(g) \cap K_1 = E(G) \cap K_1 = \{1_G\}.$$

Now we can apply Theorem 5 to find a number $n \in \mathbb{N}$ such that the subgroups $M = \langle H_1, g^n \rangle$ and $M' = \langle K_1, g^n \rangle$ are quasiconvex in G and $M' \cong K_1 * \langle g^n \rangle_{\infty}$.

Using properties of free products, we observe that $M \leq M'$ and $|M':M| = \infty$ because $H_1 \not\subseteq K_1$. On the other hand, M' is contained inside of the profinite closure of M in G. Thus we achieve a contradiction with the claim of Lemma 5.1. \square

Before proceeding with the next statement, we need to recall some facts concerning quasiisometries of metric spaces. Let \mathcal{X} and \mathcal{Y} be metric spaces with metrics $d(\cdot,\cdot)$ and $e(\cdot,\cdot)$ respectively. A map $f:\mathcal{X}\to\mathcal{Y}$ is called a *quasiisometry* if there are constants $D_1>0$ and $D_2\geq 0$ such that

$$D_1^{-1}d(a,b) - D_2 \le e(f(a), f(b)) \le D_1d(a,b) + D_2 \quad \forall \ a, b \in \mathcal{X}.$$

The spaces \mathcal{X} and \mathcal{Y} are said to be *quasiisometric* if there exists a quasiisometry $f: \mathcal{X} \to \mathcal{Y}$ whose image is *quasidense* in \mathcal{Y} , i.e., there exists $\varepsilon \geq 0$ such that for each $y \in \mathcal{Y}$ there is $x \in \mathcal{X}$ with $e(y, f(x)) \leq \varepsilon$.

M. Gromov [5] showed that if \mathcal{X} is hyperbolic and quasiisometric to \mathcal{Y} (through some map $f: \mathcal{X} \to \mathcal{Y}$) then the space \mathcal{Y} is hyperbolic too. He also noted that in this case the image f(Q) of any quasiconvex subset $Q \subseteq \mathcal{X}$ will be quasiconvex in \mathcal{Y} .

Proof of Theorem 2. Note that Q is a finite normal subgroup of G by Theorem 1. Consider the quotient $G_1 = G/Q$ together with the natural homomorphism $\psi: G \to G_1$. Since Q is finite, ψ is a quasiisometry between G and G_1 (G_1 is equipped with the word metric induced by the image of the finite generating set of G). Therefore, G_1 is also hyperbolic and any preimage map $\bar{\psi}^{-1}: G_1 \to G$ (which maps an element of G_1 to some element of G belonging to the corresponding left coset modulo G) is a quasiisometry as well.

Choose an arbitrary proper quasiconvex subgroup $H_1 \leq G_1$. Then $\bar{\psi}^{-1}(H_1)$ is a quasiconvex subset of G and

$$\bar{\psi}^{-1}(H_1) \subset \psi^{-1}(H_1) \subset \bar{\psi}^{-1}(H_1) \cdot Q$$

where $\psi^{-1}(H_1)$ is the full preimage of H_1 in G.

As Q is finite, the above formula implies $\bar{\psi}^{-1}(H_1) \approx \psi^{-1}(H_1)$. Therefore $\psi^{-1}(H_1)$ is quasiconvex in G by Remark 5.1. According to our assumptions, there is a proper finite index subgroup $L \leq G$ containing $\psi^{-1}(H_1)$. By definition, $Q \leq L$, hence $\psi(L)$ is a proper finite index subgroup of G_1 with $H_1 \leq \psi(L)$.

Thus, we have shown that G_1 also engulfs each proper quasiconvex subgroup. By the construction, G_1 is residually finite and, therefore, GFERF (Theorem 3).

Consider any quasiconvex subgroup $H \leq G$. Then $\psi(H)$ is quasiconvex in G_1 and, thus, it is closed in the profinite topology on G_1 . The homomorphism ψ is a continuous map if G and G_1 are equipped with their profinite topologies, thus the full preimage $\psi^{-1}(\psi(H)) = H \cdot Q$ is closed in G. Obviously $H, Q \leq K$ (where K is the profinite closure of H in G), hence K = HQ. Q.e.d.

6. Free products of GFERF groups

In the previous section we considered hyperbolic groups which engulf every proper quasiconvex subgroup. Let us name them *QE-groups*, for brevity.

As it can be seen from Theorem 2, any QE-group G is very close to being GFERF. In fact, G is quasiisometric to the quotient G/E(G) which is GFERF by Corollary 3 and Theorem 3. Nevertheless, the answer to the question whether each QE-group is GFERF is still unclear. Theorem 2 would yield a positive answer if a free product of any two QE-groups were a QE-group itself. Unfortunately, the author is unable to prove this; actually, he doubts if this is true in general.

However, the following statement, proved by R. Burns, can be used to show that a free product of GFERF-groups is, again, GFERF:

Lemma 6.1. ([2, Thm. 1.1]) Suppose G is a free product of its subgroups G_i indexed by some set I, and let H be a finitely generated subgroup. If for each $i \in I$, $g \in G$, the subgroup $(H^g \cap G_i)$ is G_i -separable, then H is G-separable.

Let H be a subgroup of a group G. Suppose \mathcal{A} and \mathcal{B} are finite generating sets for G and H respectively and $|\cdot|_G$, $|\cdot|_H$ are the corresponding length functions. Set $\hat{c} = \max\{|b|_G : b \in \mathcal{B}\}$. Evidently, $|h|_G \leq \hat{c}|h|_H$ for all $h \in H$.

H is called *undistorted* in G if there exists a constant $c \geq 0$ such that $|h|_H \leq c|h|_G$ for every $h \in H$. In a hyperbolic group G, a finitely generated subgroup is undistorted if and only if it is quasiconvex ([10, Lemma 1.6]).

Proof of Theorem 4. It is well known that a free product of hyperbolic groups is a hyperbolic group (see, for instance, [4, 1.34]). Thus, G is hyperbolic. Clearly, the subgroups G_1 and G_2 are undistorted in G; consequently, they are quasiconvex.

Choose an arbitrary quasiconvex subgroup $H \leq G$, an element $g \in G$ and $i \in \{1, 2\}$. The subgroup H^g is quasiconvex by Remark 2.1. Since the intersection of two quasiconvex subgroups is quasiconvex ([21, Prop. 3]), $(H^g \cap G_i)$ is quasiconvex in G. Consequently, $(H^g \cap G_i)$ is undistorted in G, and, hence, it is undistorted in G_i . Thus $(H^g \cap G_i)$ is G_i -separable because G_i is GFERF.

According to Lemma 6.1, H is G-separable. Q.e.d.

References

- J. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, H. Short, Notes on word hyperbolic groups. In: Short, H.B., ed. Group Theory from a Geometrical Viewpoint, Proc. ICTP Trieste, World Scientific, Singapore, 1991, pp. 3-63.
- [2] R.G. Burns, On finitely generated subgroups of free products, J. Austral. Math. Soc. 12 (1971), pp. 358-364.
- [3] R. Gitik, Doubles of groups and hyperbolic LERF 3-manifolds, Ann. of Math. (2) 150 (1999), no. 3, pp. 775-806.
- [4] E. Ghys and P. de la Harpe, Sur les Groupes Hyperboliques d'après Michael Gromov, Progress in Mathematics, Vol.83, Birkhauser, 1990.
- [5] M. Gromov, Hyperbolic groups, Essays in Group Theory, ed. S.M.Gersten, Math. Sci. Res. Inst. Publ., Vol. 8, Springer, 1987, pp. 75-263.
- [6] M. Hall, Jr., Coset representations in free groups, Trans. Amer. Math. Soc. 67, (1949), pp. 421-432.
- [7] I. Kapovich, H. Short, Greeenberg's theorem for quasiconvex subgroups of word hyperbolic groups, Can. J. Math., v.48(6), 1996, pp. 1224-1244.
- [8] D.D. Long, Engulfing and subgroup separability for hyperbolic groups, Trans. Amer. Math. Soc. 308 (1988), no. 2, pp. 849-859
- [9] M. Mihalik, W. Towle, Quasiconvex subgroups of negatively curved groups, Pure and Applied Algebra, 95 (1994), pp. 297-301.
- [10] A. Minasyan, On products of quasiconvex subgroups in hyperbolic groups, Intern. J. of Algebra and Comput. 14 (2004), no. 2, pp. 173-195.
- [11] A. Minasyan, On Quasiconvex Subsets of Hyperbolic Groups, Ph.D. Thesis, Vanderbilt University, 2005. Available from http://etd.library.vanderbilt.edu
- [12] A. Minasyan, On residualizing homomorphisms preserving quasiconvexity, Comm. in Algebra 33 (2005), no. 7, pp. 2423-2463. Available from arXiv: math.GR/0406126.
- [13] A. Minasyan, Separable Subsets of GFERF negatively curved groups, preprint, 2004. Available from arXiv: math.GR/0502101.
- [14] A. Minasyan, Some Properties of Subsets of Hyperbolic groups, Comm. in Algebra 33 (2005), no. 3, pp. 909-935.
- [15] B.H. Neumann, Groups with finite classes of conjugate elements, Proc. London Math. Soc. (3) 1, (1951), pp. 178-187.
- [16] G.A. Niblo, B.T. Williams, Engulfing in word-hyperbolic groups, Algebr. Geom. Topol. 2 (2002), pp. 743-755
- [17] A.Yu. Ol'shanskii, On residualing homomorphisms and G-subgroups of hyperbolic groups, Intern. J. of Algebra and Comput. 3 (1993), no. 4, pp. 365-409.
- [18] A.Yu. Ol'shanskii, Periodic Quotients of Hyperbolic Groups, Mat. Sbornik 182 (1991), no. 4, pp. 543-567 (Russian). English Translation: Math. USSR Sbornik 72 (1992), no. 2, pp. 519-541.
- [19] N.S. Romanovskii, On the residual finiteness of free products with respect to subgroups (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), pp. 1324-1329.
- [20] P. Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. 17 (1978), pp. 555-565.
- [21] H.B. Short, Quasiconvexity and a Theorem of Howson's, Group Theory from a Geometrical Viewpoint (Trieste, 1990), World Sci. Publishing, River Edge, NJ, 1991, pp. 168-176.
- [22] E. Swenson, Limit sets in the boundary of negatively curved groups, preprint, 1994.

Université de Genève, Section de Mathématiques, 2-4 rue du Lièvre, Case postale 64, 1211 GENÈVE 4, SWITZERLAND

E-mail address: aminasyan@gmail.com