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Abstract

We present some results about quasiconvex subgroups of infinite index
and their products. After that we extend the standard notion of a sub-
group commensurator to an arbitrary subset of a group, and generalize
some of the previously known results.

1 Introduction

Assume that G is a d-hyperbolic group for some ¢ > 0 and I'(G, A) is its Cayley
graph corresponding to some finite symmetrized (i.e. A = A1) generating
set A. T'(G,.A) is a proper geodesic metric space; a subset @ C G is said to
be e-quasiconvez, if any geodesic connecting two elements from ) belongs to a
closed e-neighborhood O.(Q) of @ in T'(G,.A) for some ¢ > 0. Q will be called
quasiconver if there exists € > 0 for which it is e-quasiconvex.

In [6] Gromov shows that the notion of quasiconvexity in a hyperbolic group
does not depend on the choice of a finite generating set .

If A,B C G,z € G we define AP = {bab™! | a € A,b € B}, A* = zAz~ L.
For any = € G the set % = {2} is the conjugacy class of the element .

If z € G, o(x) will denote the order of the element z in G, |z|g — the length
of a shortest representation of x in terms of the generators from A. (x) will be
the cyclic subgroup of G generated by x (sometimes, if o(z) = n, we will write
(x)n). 1 will denote the identity element of G. For a subgroup H < G, |G : H|
will be the index of H in G.

Theorem 1. Let Hy, Ho, ..., Hs be quasiconvex subgroups of a hyperbolic group
G. Let K be an arbitrary subgroup of G. Then the following two conditions are
equivalent:

(a) |K : (KN HY)| = o0 for every j € {1,2,...,s} and every g € G;

(b) there exists an element of infinite order x € K such that the intersection
(T)oo N(HE UHS U...UHE) is trivial.

Let G1,Ga, ..., G, be quasiconvex subgroups of G, fo, f1,..., fn € G,
n € NU{0}. Using the same terminology as in [9], the set

P = foG1f1G2-...- fnc1Gnfrn={fogrfr- - gnfn€Glgi€CGyi, i=1,...,n}

will be called a quasiconver product.
The quasiconvex subgroups G;, i = 1,2,...,n, are members of the product P.



Let U = |J}_, Py be a finite union of quasiconvex products Py, k =1,...,q.
A subgroup H < G will be called a member of U, by definition, if H is a
member of Py for some 1 < k < g. For any such set U we fix its representation
as a finite union of quasiconvex products and fix its members.

Theorem 2. Assume that U is a finite union of quasiconvexr products in a
hyperbolic group G and the subgroups Hy, Hs, ..., Hs are all the members of U.
If K is a subgroup of G and K C U then for some g € G and j € {1,2,...,s}
one has |K : (K N HY)| < oo,

We will say that a finite union of quasiconvex products has infinite index in
G if each of its members has infinite index in G. As an immediate consequence
of Theorem2 applied to the case when K = G we achieve

Corollary 1. Let G be a hyperbolic group and U be a finite union of quasiconver
products of infinite index in G. Then U is a proper subset of G, i.e. G £ U.

In section 2 we generalize the definition of a subgroup commensurator. More
precisely, to any subset A C G we correspond a subgroup Commg(A) < G. In
sections 7 and 8 we list several known results about quasiconvex subgroups and
their commensurators and then extend them to more general settings.

A group is said to be non-elementary if it is not virtually cyclic. In section
9 we investigate some properties of infinite conjugacy classes and prove

Theorem 3. Let G be a non-elementary hyperbolic group and A be a finite union
of conjugacy classes in G. If the subset A is infinite then it is not quasiconvex.
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2 Some concepts and definitions

Suppose G is an arbitrary group and 2% is the set of all its subsets. Below we
establish some auxiliary relations on 2G. Assume A4, B C G.

Definition. We will write B < A if there exist elements z1,...,x, € G such
that
B C Axri UAxo U. ..U Ax, .

If G < A, the subset A will be called quasidense.

Obviously, the relation ”=<” is transitive and reflexive.

Any subgroup H of finite index in G is quasidense; the complement
H(9 = G\H in this case is also quasidense (if H # G) since it contains a left
coset modulo H, and a shift (left or right) of a quasidense subset is quasidense.

On the other hand, if H < G and |G : H| = oo, the set of elements of H is
not quasidense in G. There is y € G\ H, hence for any = € G either x € G\H
or zy € G\H, thus G = HOUH®Oy ! ie. HO is still quasidense.



Definition. A and B will be called equivalent if A < B and B < A. In this
case we will use the notation A ~ B.

It is easy to check that ”"~" is an equivalence relation on 2¢. Now, let [A]
denote the equivalence class of a subset A C GG and let M be the set of all such
equivalence classes. Evidently, the relation ”=<” induces a partial order on M:
[A],[B] € M, [A] < [B] if and only if A < B.

The group G acts on M as follows: g € G, [A] € M, then g o [A] = [¢g4].
Indeed, the verification of the group action axioms is straightforward:

1. If g,h € G, [A] € M then (gh) o [A] = go (ho[A]);

2. If 1¢ € G is the identity element and [A] € M then 1¢ o [A] = [A].

This action is well defined because if A~ B, g € G, then gA = gB.

If A C G, the stabilizer of [A] under this action is the subgroup

Sta([Al) ={g€ G | go[A] = [A]}.

Definition. For a given subset A of the group G the subgroup Stq([4]) will
be called commensurator of A in G and denoted Commg(A). In other words,

Commg(A)={ge G| gA~ A} .

Thus, to an arbitrary subset A of the group we corresponded a subgroup in
G. Now, let’s list some

Properties of Commg(A):

1) If card(A) < oo or A is quasidense then Commg(A) = G (because any
two finite non-empty subsets are equivalent and a left shift of a quasidense
subset is quasidense);

2)If A,B C G and A = B then Commg(A) = Commg(B);

3) The commensurator of A C G contains (as its subgroups) the normalizer
of A Ng(A)={ge€ G| gAg—! = A} and the stabilizer under the action of the
group G on itself by left multiplication Stg(A4) ={g € G | gA = A}.

4) For any h € G Commg(hA) = hCommg(A)h™".

Lemma 2.1. Let A, B be subgroups of G. Then A < B if and only if the index
|A: (AN B)| is finite.

Proof. The sufficiency is trivial. To prove the necessity, suppose there exist
y; € G, 7 = 1,2,...,m, such that A C By; U...U By,,. Without loss of
generality we can assume that A N By; # 0 for every j = 1,2,...,m. Then
for each j = 1,2,...,m, there are a; € A,b; € B such that y; = bja;. Hence
By; = Ba; for all j, and therefore

A:OByjﬁA:(jBaJﬂA OBOAGJ,

j=1 j=1 j=1

ie. |[A: (BNA)| <oo0. O



For a subgroup H < G the standard notion of the commensurator (virtual
normalizer) subgroup of H is given by

VNe(H)={geG||H:(HNgHg ") <oo,|gHg " : (HNgHg ")| < o0} .

Now we are going to show that our new definition is just a generalization of it:
Remark 1. If H is a subgroup of the group G then Commg(H) = VNg(H).
Indeed, let g € VNg(H). Then, by definition,

H =< (HﬂgHg_l) <gHg ' <gH and gH < gHg ' =< (HﬁgHg_l) <H,

thus H =~ gH and g € Commg(H). So, VNg(H) C Commg(H).

Now, suppose g € Commg(H), implying H ~ gH but gH ~ gHg~!, hence
H =< gHg ! and gHg™! < H. By Lemma 2.1, g € VNg(H). Therefore
VNg(H) = Comme(H).

If the group G is finitely generated, one can fix a finite symmetrized generat-
ing set A and define the word metric d(-, ) corresponding to A in the standard
way: first for every g € G we define [ 4(g) to be the length of a shortest word in
A representing g; second, for any x,y € G we set d(x,y) = l4(x~'y). Now, for
arbitrary two subsets A, B C G one can establish

h(A,B) =inf{e >0 | AC O.(B),B C O.(A)} -

the Hausdorff distance between A and B (O.(B) is the closed e-neighborhood of
B in G). Where an infinum over the empty set is defined to be positive infinity.
In this case, for any A, B C G we observe that B < A if and only if there exists
¢ > 0 such that B C O.(A4), and, therefore, A ~ B if and only if h(A, B) < cc.

Now we investigate the special case, when G is 6-hyperbolic (for the definition
of a hyperbolic group see section 3) and, therefore, finitely generated. We will
need the following

Remark 2. ([9, Remark 4, lemma 2.1]) Let @Q,A, B C G be quasiconvex
subsets, g € G. Then (a) the left shift g@Q = {gz | z € @} is quasiconvex ;
(b) the right shift Qg = {zg | € Q} is quasiconvex; (¢)A U B is quasiconvex.

Therefore, a left coset modulo a quasiconvex subgroup and a conjugate sub-
group to it are quasiconvex in G.

Remark 3. Let the group G be hyperbolic.

1) Suppose a subset A C G is quasiconvex and A ~ B for some B C G.
Then B is also quasiconvex.

Indeed, as we saw above, there exist ¢j;,co > 0 such that B € O (4)
and A C O, (B). Consider arbitrary xz,y € B and a geodesic segment [z, y]
connecting them. Then

ny€0,(4)= ) 4y,

9€G,|glc<cr

which is e-quasiconvex by Remark 2 for some € > 0. Therefore,



['Tvy] - 001+8(A) C Ocyteten (B)

implying that B is (¢; + ¢o + €)-quasiconvex.

2) A subset @ of the group G (or of the Cayley graph I'(G, .A) ) is quasidense
if and only if there exists @ > 0 such that for every x € G (or I'(G, A) ) the
distance d(z, Q) = inf{d(z,y) | y € Q} is at most «, i.e. G C O,(Q).

Indeed, if G = Qg1 UQg2 U ... UQgy, where g; € G, 7 =1,2,...,n, Denote
a=maz{|lgilc : 1 <i<n}. Then for any x € G, there are i € {1,...,n} and
y € Q with x = yg;, hence d(y,x) = |gi|la < a.

For demonstrating the sufficiency, let {g1,g2,...,9n} be the set of all ele-
ments in G of length at most a. Then for every x € G there exists y € @
with d(y,x) = |y 'z|¢ < a; hence, y~tx = g; for some i € {1,2,...,n}. Thus,
T =yg; € Qgi-

3) A quasidense subset @ C G is quasiconvex.

This is an immediate consequence of the part 2).

3 Preliminaries

Assume (X,d(~,~)) is a proper geodesic metric space. If Q@ C X, N > 0, the
closed N-neighborhood of @ will be denoted by

OnQ) < {z € X | d(z,Q) < N} .

If x,y,w € X, then the number

(el < 3 (A, w) + d(y, ) — d(z,))
is called the Gromov product of x and y with respect to w.

Let abe be a geodesic triangle in the space X and [a, b], [b, c], [a, c] be its sides
between the corresponding vertices. There exist ”special” points O, € [b, ¢,
Oy € [a, ], O; € [a,b] with the properties: d(a,Op) = d(a,O,) = a, d(b,O,) =
=d(b,0.) = B, d(c¢,0,) = d(c,Op) = ~. From a corresponding system of linear
equations one can find that a = (blc),, 8 = (alc)s, v = (a|b).. Two points
O € [a,b] and O’ € [a, ] are called a-equidistant if d(a,O) = d(a,0’) < a. The
triangle abc is said to be 0-thin if for any two points O, O’ lying on its sides and
equidistant from one of its vertices, d(O,0’) < § holds (Figure 0).

A geodesic n-gon in the space X is said to be d-slim if each of its sides
belongs to a closed é-neighborhood of the union of the others.

We assume the following equivalent definitions of hyperbolicity of the space
X to be known to the reader (see [4],[14]):
1°. There exists 6 > 0 such that for any four points x,y, z, w € X their Gromov
products satisfy

(@[y)w = min{(z]2)w, (y[2)w} =0 ;

2°. All triangles in X are §-thin for some ¢ > 0;
3°. All triangles in X are §-slim for some ¢ > 0.



Figure 0

Now, suppose G is finitely generated group with a fixed finite symmetrized
generating set 4. One can define d(-,-) to be the usual left-invariant metric
on the Cayley graph of the group G corresponding to A. Then the Cayley
graph I'(G, A) becomes a proper geodesic metric space. G is called hyperbolic
if (G, A) is a hyperbolic metric space. It is easy to show that this definition does
not depend on the choice of the finite generating set A in G, thus hyperbolicity
is a group-theoretical property. It is well known that free groups of finite rank
are hyperbolic.

Further on we will assume that I'(G,.A) meets 1°,2° and 3° for a fixed
(sufficiently large) § > 0.

For any two points x,y € I'(G, A) we fix a geodesic path between them and
denote it by [z, y].

Let p be a path in the Cayley graph of G. Further on by p_, py we will
denote the startpoint and the endpoint of p, by ||p|| — its length; lab(p), as usual,
will mean the word in the alphabet A written on p. elem(p) € G will denote
the element of the group G represented by the word lab(p).

A path ¢ is called (), ¢)- quasigeodesic if there exist 0 < A < 1, ¢ > 0, such
that for any subpath p of ¢ the inequality A||p|| — ¢ < d(p—, p+) holds.

In a hyperbolic space quasigeodesics and geodesics with same ends are mutually
close :

Lemma 3.1. ([4, 5.6,5.11],[14, 3.3]) There is a constant v = v(d, A, ¢) such that
for any (), ¢)-quasigeodesic path p in T'(G,A) and a geodesic q with p_ = q_,
Py = qs, one has p C O,(q) and g C O, (p).

An important property of cyclic subgroups in a hyperbolic group states

Lemma 3.2. ([4, 8.21],[14, 3.2]) For any word w representing an element g € G
of infinite order there exist constants A > 0, ¢ > 0, such that any path with a
label w™ in the Cayley graph of G is (A, c)-quasigeodesic for arbitrary integer
m.



In particular, it follows from lemmas 3.1 and 3.2 that any cyclic subgroup
of a hyperbolic group is quasiconvex.

Recall that a group H is called elementary if it has a cyclic subgroup (h) of
finite index. It is known that every element g € G of infinite order is contained
in a unique maximal elementary subgroup E(g) of G ([6],[12]), and

E(g) = {z € G | 3n € N such that zg"z "1 = ¢g="}.

Let Wy, Ws,...,W; be words in A representing elements g1, go,...,q of
infinite order, where E(g;) # E(g;) for ¢ # j. The following lemma will be
useful:

Lemma 3.3. ([12, Lemma 2.3]) There exist A = A(Wy,Wa,...,W;) >0, ¢ =
c(Wy,Wa, ..., W;) >0 and N = N(Wy,Wa,...,W;) > 0 such that any path p
in the Cayley graph T'(G, A) with label W W™ ... W™ is (), c¢)-quasigeodesic
if ig # g1 fork=1,2,...,s—1, and |mg| > N fork=2,3,...,s—1 (each
i belongs to {1,...,1}).

If Xy, Xo,...,X, are points in I'(G, A) , the notation X;X5...X,, will be
used for the geodesic n-gon with vertices X;, i = 1,...,n, and sides [X;, X;4+1],
i=12...,n—1, [X,,Xo]. [X1,X2,...,X,] will denote the broken line with
these vertices in the corresponding order.

Lemma 3.4. ([11, Lemma 21]) Let p = [Xo, X1,...,X,] be a broken line in
F(G,A) such that H[XiflaX’i]H >CyVi= 1,...,n, and (Xi71|Xi+l)Xi < Cy
Vi=1,...,n—1, where Cy > 145, Cy > 12(Cy + §). Then p is contained in
the closed 2Cy-neighborhood Oac, ([Xo, Xn]) of the geodesic segment [Xo, X,].

Lemma 3.5. In the conditions of Lemma 3.4, ||[Xo, X.]|| > lIpll/2-

Proof. Induction on n. If n = 1 the statement is trivial. So, assume n >
1. By the induction hypothesis ||[Xo, Xn—1]|| > |l¢||/2 where ¢ is the broken
line [Xo, X1,...,X,—1]. It is shown in the proof of [11, Lemma 21] that our
conditions imply (Xo|X,)x, _, < Co+ 6, hence

n—1 —

11X0, Xn]ll = [[Xo, Xnall + [ Xn—1, Xalll = 2(Xo|Xn)x,_, =

n—1

> [lgll/2 + [ Xn—1, Xa]ll /2 + C1/2 = 2(Co + &) > [|p]| /2 .
Q.e.d. O

Lemma 3.6. ([13, Prop. 3]|) Let G be a group generated by a finite set A. Let
A, B be subgroups of G quasiconvex with respect to A. Then ANB is quasiconvex
with respect to A.

Lemma 3.7. ([1, Prop. 1]) Let G be a hyperbolic group and H a quasiconvex
subgroup of G of infinite index. Then the number of double cosets of G modulo
H is infinite.



Lemma 3.8. ([1, Lemma 10],[5, Lemma 1.3]) For any integer m > 1 and num-
bers 0,e,C > 0, there exists A = A(m,d,e,C) > 0 with the following property.
Let G be a d-hyperbolic group with a generating set containing at most m
elements and H a e-quasiconvex subgroup of G. Let g1,...,gn,s be elements of
G such that
(i) cosets Hg; and Hg; are different for i # j;
(i) gn is a shortest representative of the coset Hgy;
(iil) |gila < lgnla for 1 <i < n;
(iv) for i # n, all the products g;g,;* belong to the same double coset HsH
with |s|la < C.
Thenn < A= A(m,d,e,C).

Lemma 3.9. ([4, 8.3.36]) Any infinite subgroup of a hyperbolic group contains
an element of infinite order.

Let H be a subgroup of G. Inheriting the terminology from [5] we will say
that the elements {g; | 1 < i < n} of G are essentially distinct (relatively to
H) if Hg, # Hygj; for i # j. Conjugates gi_ngi of H in this case are called
essentially distinct conjugates.

Definition. ([5, Def. 0.3]) The width of an infinite subgroup H in G is n
if there exists a collection of essentially distinct conjugates of H such that the
intersection of any two elements of the collection is infinite and n is maximal
possible. The width of a finite subgroup is defined to be 0.

Lemma 3.10. ([5, Main Thm.]) A quasiconvezr subgroup of a hyperbolic group
has a finite width.

Lemma 3.11. ([9, Cor. 1,Lemma 2.1]) In a hyperbolic group a finite union of
quasiconvex products is a quasiconver set.

Lemma 3.12. ([9, Thm. 1]) Suppose G1,...,Gy,, H1,...,Hy, are quasiconvex
subgroups of the group G, n,m € N; f.e € G. Then there exist numbers

ryt1, ..., bt € NU{0} and fi,cup, Bix € G, k=1,2,..., 4 (for every fized 1),
l=1,2,...,7r, such that

T
fG1G2'...-GnﬂeHlHQ-...-Hm:UflSl
1=1
where for each I, t = t;, there are indices 1 < iy <iy < ... <3y <n, 1 <5 <
<jp<...<ji<m:
Sp=(GS N HI) L (GR N H).

Remark 4. Observe that arbitrary quasiconvex product foG1f1Gs ... - Gnfn
is equal to a ”transformed” product fG{G% - ... G, (which appears in the
formulation of Lemma 3.12) where G} = (fi-...-fu) 'Gi(firo o fu)yi=1,...,n,
are quasiconvex subgroups of G by Remark 2 and f = fof1-... fn € G.
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4 Properties of Quasiconvex Subgroups of Infinite Index

Lemma 4.1. Consider a geodesic quadrangle X1 XoX3Xy in T'(G, A) with
d(Xa, X3) > d(X1, X2) +d(Xs, X4). Then there are points U,V € [Xa, X3] such
that d(X2,U) < d(X1,X3), d(V,X3) < d(Xs,X4) and the geodesic subsegment
[U, V] of [Xa2, X3] lies 20-close to the side [ X1, X4].

Proof. Since (X1|X3)X2 S d(Xl,XQ) and (X1|X4)X3 S d(X37X4), one
can choose U,V € [Xq, X3| satisfying d(X2,U) = (X1|X3)x,, d(X3,V) =
(X1|X4)x,- The triangle X X3X5 is §-thin, therefore, after taking V' € [ X, X3]
at distance d(X3, V) from X3, one obtains [U, V] C Os([X1,V’]). Finally, since
V' is the special point of triangle X7 X3X, by construction, [X1,V’] is in the
closed d-neighborhood of the side [X7, X4], and thus, [U, V] C Oas5([ X1, X4]). O

Lemma 4.2. Let A be an infinite e-quasiconvex set in G and g € G. Then
if the intersection A N gAg™' is infinite, there exists an element r € G with
|7l < 46 + 2e + 23¢ such that g € ArA™L, where » is the length of a shortest
element from A.

Proof. Note, at first, that for every a € A the geodesic segment [lg,a)
belongs to a closed (§ 4+ & + 3)-neighborhood of A in T'(G,.A) . Indeed, pick
b e A with d(1¢,b) = |blg = » and consider the geodesic triangle 1gab. Using
d-hyperbolicity of the Cayley graph one achieves

[lg; a] € Os([a,b] U [1g; b)) C Osts((a,0]) C Osyiere(A) -

By the conditions of the lemma there is an element a; € A such that
ga1g~t = ay € A and |a1|¢ > 2|glg. Set X; = 1g, X2 = g, X3 = ga1,X4 = as
(Fig. 1). Then d(Xa, X3) = |a1|a, d(X1, X2) = |9l = |ay 'gai1|e = d(X3, X4)
and in the geodesic quadrangle X; X5 X3X, one has d(Xs, X3) > d(X1, X2) +
d(Xs,X4) and, so, by lemma 1 there exist © € [X1,X4], y € [X2, X3] with
d(z,y) < 26. As we showed above, [1g,a;] C Osysere(A) for i = 1,2, hence



there is @ € A such that d(«,z) < 6 + € + s. A left shift is an isometry of
I'(G, A) , thus, [X2, X3] = [9,9a1] C Os4c+c(gA) and we can obtain an element
0 € A such that d(y,g08) <0 +e+ ».

Consider the broken line ¢ = [X1, o, g3, g] in I'(G, A) ; then elem(q) = g in
G. d(a,g8) < 40 4 2¢ + 25¢ by construction, hence we achieved g = elem(q) =
a-r- B~ where r = elem([a, g3)), |rlg < d(a, gB8) < 46 + 26 + 23¢. O

For the case when A is a quasiconvex subgroup of a hyperbolic group G,
Lemma 4.2 was proved in [5, Lemma 1.2].

Corollary 2. Suppose H is a quasiconvex subgroup of infinite index in a hy-
perbolic group G. Then H contains no infinite normal subgroups of G.

Proof. Indeed, assume N < G and N C H. By Lemma 3.7, there is a
double coset HrH, r € G, with the length of a shortest representative greater
than (46 + 2¢) (e is the quasiconvexity constant of H). Thus, according to the
Lemma 4.2, N C HNrHr~! is finite. [

Lemma 4.3. Let G be a §-hyperbolic group, H and K — its subgroups with H
N

quasiconvex. If K C U Hs;H for some s1,...,snx € G then K X H, i.e.
j=1
|[K:(KNH)| <.

Proof. By contradiction, assume K = | |;~, (KN H)xz; — disjoint union of right
cosets with x; € K for all 7« € N. For every ¢ choose a shortest representative g;
of the coset Hx; in G. Then for arbitrary i # k, Hg; = Hx; # Hxy = Hgi, and
;vl-xgl € HsjH for some j € {1,2,...,N}, j = j(i, k), hence giggl € Hs;H.

Let A; be the constants corresponding to Hs;H, j = 1,..., N, from Lemma
3.8. Pick a natural number n > Z;\;l A; and consider g1, ¢92,...,9n. Without
loss of generality, assume |g,|¢ > |gi|¢ for 1 <i < n.

By the choice of n, there exits I € {1,..., N} such that

card{i c{1,2,...,n—1} | gig; ' € HslH} > A .
This leads to a contradiction to Lemma 3.8. Q.e.d. O

Lemma 4.4. Suppose H is a quasiconvex subgroup of a hyperbolic group G and
K is a subgroup of G with |K : (K N H)| = co. Then there is an element x € K
of infinite order such that the intersection (x)oo N H is trivial.

Proof. Observe that our conditions imply that K is infinite. If K N H is
finite, the statement follows from Lemma 3.9 applied to K.

So, suppose K N H is infinite; hence there is an element y € K N H of infinite
order. |K : (K N H)| = oo, therefore, applying lemmas 4.3 and 4.2 one obtains
g € K such that HNgHg~* is a finite subgroup of H. Thus z = gyg~' € gHg™!
satisfies the needed property (z is an element of K because g,y € K). O

Lemma 4.5. Let G be a d-hyperbolic group with respect to some finite gener-
ating set A, and let H; be ;-quasiconvezr subgroups of G, i = 1,2. If one has
sup{(hi|h2)1, : h1 € H1,ha € Ha} = 0o then card(Hy N Hy) = co.

10



Figure 2

Proof. Define a finite subset A of G by A = {g € H1Hy : |gl¢ < d+e1+ea}.
For each g € A pick a pair (z,y) € H; x Hy such that 27 'y = g, and let
Q C H; x Hy denote the (finite) set of the chosen pairs. Define €1 to be the
projection of Q on Hy,ie. @y ={x € Hy |Jye Hy: (z,y) € Q}.

By construction, card();) < oo, and thus, D =4 max{|hlg : h € Q1} < oo.

Assume h; € Hy and hy € Hy and consider the geodesic triangle 1ghihs in
I'(G, A) (Figure 2). Let P,Q be its "special” points on the sides [1¢, h1] and
[1g, ha] correspondingly. Since the triangles in I'(G, A) are d-thin and H; are €;-
quasiconvex, ¢ = 1,2, we have d(P, Q) < J, and there exist h; € H;,i = 1,2, with
d(iLl, P) <e, d(ilg, Q) < e5. By the triangle inequality d(ﬁl, ﬁg) = \B;lﬁﬂg <
0 + €1 + &9, therefore, there is a pair (z,y) € Q such that ﬁflﬂg =21y, and so

hlx_l = hgy_l e HHNH,. (1)
From our construction it also follows that
|z g > |hla — |zl > d(lg, P) —ey — D = (hi|ha)1y —e1 — D . (2)

Hence, if sup{(h1|h2)1, : h1 € H1,ha € Hy} = oo then, as we see from (1)
and (2), H; N Hs has elements of arbitrary large lengths, and thus, it is infinite.
O

Suppose Hi, Ho, ..., Hs are quasiconvex subgroups of the group G, and K
is a subgroup of G satisfying |K : (K N H;)| =00, j=1,2,...,s.

Lemma 4.6. There exists an element of infinite order x € K with the property
<$>oo N (H1 UHsU... UHS) = {lg}.

11



Proof. By Lemma 4.4 for every ¢ = 1,2,...,s there is an element z; € K of
infinite order such that Z* ¢ H; for every n € Z\{0}. If for somei,j € {1,...,s},
i # j, one has E(Z;) = E(&;), then (Z;) N (&;) is non-trivial, therefore one
can remove Z; from the collection {Z1,Z9,...,%s} because in this case one has
(Zi)oo N Hj = {1g} (since any two non-trivial subgroups of Z intersect non-
trivially). Thus, after performing this procedure a finite number of times, we
will obtain a collection of elements of infinite order {z1,x2,...,2,} C G, r < s,
satisfying the properties: E(z;) # E(x;) for ¢ # j, and for every k =1,2,...,s
there is i, € {1,...,r} such that (z;,)e N Hr = {1g}.

Now, for each i =1,2,...,r and k =1,2,...,s, define

S { min{m € N | 2" € Hy}, if (x;) N Hy # {1}
ik = :

0, otherwise
Denote
o — 1, if ajp =0 forevery k=1,...,s
O lemdag | 1<k < s o >0} otherwise
a; € N, so one can set y; = 7%, ¢ = 1,2,...,r. Then for any distinct

i,je{l,...,r},andany k=1,...,s, E(z;) = E(y;) # E(y;) = E(z;), and

(1) either y; € Hy or (y;)oo N Hx, = {1} (by construction, the latter holds
for i = Zk)

At last, for every natural n we define z, = yfy5 - ... -y; € K.

Assume, by contradiction, that for each n € N there exits [ = [(n) € N such
that zﬁl € HyU...UH; (this obviously holds if z, has a finite order in G). Then
there is an index ko € {1,2,...,s} such that (z,)"™) € Hy, for infinitely many
n € N. Without loss of generality, assume ky = 1.

Let wy,ws,...,w, be words over the alphabet A representing the elements
Y1,Y2, .- -, Y- correspondingly. We apply Lemma 3.3 to obtain A > 0, ¢ > 0
and N > 0 (depending on wq, ws, ..., w,) such that any path p in the Cayley
graph T'(G, A) with label (ww} ... w?)"™ is (), ¢)-quasigeodesic if n > N. Let
v = v(0, A, ¢) be the constant from Lemma 3.1, and ¢ be the quasiconvexity
constant of Hj.

Let p, be the path in I'(G, A) starting at 1¢ labelled by (wjw} .. .w?) ™),
n €N, n > N. p, ends at the element zil(n) which belongs to H; for infinitely
many n. Then p, C O,4-(H;) for infinitely many n.

Denote t = min{i | 1 <i <r,y; ¢ H1} (such t exists by construction of y;).

By definition, y7y% - ... - yy* lies on p, therefore, d(yfy% - ... - yP, Hi) <v+e
for infinitely many n, i.e. for those n one can find elements a,, € G such that
yryy - .. - yta, € Hy and |ap|e < v+ e. Remark that yi,...,5:—1 € Hy by

definition, hence y;'a,, = h,, € H; for infinitely many n € N.
Finally, since one has

W¢'1hn)1e = 1/2(yi'lc + |hale = lanla) = 1/2(|y;'|lc —v —€)
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Figure 3

for infinitely many n, we apply Lemma 3.2 to achieve sup{(y]'|hn)1,} = 0.
Hence, by Lemma 4.5, card({y:)oo N H1) = oo, thus, from (i) it follows that
ys € Hy — a contradiction.

Therefore, there exist n € N such that 2" ¢ H; U...U H; for every m € N,
consequently, = z, € K has an infinite order and (z)ooN(H1U...UHy) = {1¢}.
The proof of the lemma is finished. [

Proposition 1. Suppose H is a quasiconvex subgroup of a hyperbolic group
G and K is any subgroup of G that satisfies |K : (K N HY)| = oo for all
g € G. Then there exists an element x € K having infinite order, such that
<J)>OO N HG = {1(;}.

Proof of Proposition 1. Observe that the subgroup K is infinite because
|K : (K N H)| = oo, thus applying Lemma 3.9 we obtain an element h € K of
infinite order.

Assume, by contradiction, that for every € K there exist [ = [(z) € N
and g = g(z) € G such that gz'g~! € H. In particular, hlo € gango for some
lp € N, go € G.

Take an arbitrary y € K of infinite order. If E(y) = E(h) then y™ € (h) for
some m € N, hence y™ ¢ 90_ng0-

If E(y) # E(h), choose words wy, wy over the alphabet A representing y and
h. Then by Lemma 3.3 there exist A = A(w1,ws2) > 0, ¢ = ¢(w1,w2) > 0 and
N = N(wy,wz) > 0 such that any path p in the Cayley graph I'(G,.A) with
label (wlwh)! is (A, c)-quasigeodesic if n > N, for every | € N.

Let v = v(d, A, ¢) be the constant from Lemma 3.1 and let ¢ denote the
quasiconvexity constant for H.

By our assumption for every n € N, n > N, there are [,, € N and g, € G
satisfying g, (y"h")!"g-* € H, then g,(y"h")*'ng-1 € H Y k € N. Consider a
path p,, in T'(G, A) with (p,)_ = g,, and lab(p,) = (wPwy)*» and a geodesic
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quadrangle X; Xo X3X, in T'(G, A) where X| = 1g, Xo = gn, X3 = gn(y"h")Fn,
Xy = gn(y"h")*mg,t € H.

Now, if n > N, the path p, is (), ¢)-quasigeodesic and v-close to [Xs, X3],
therefore, applying Lemma 4.1, we conclude that for sufficiently large k (com-
pared to v and |g,|¢) there is a subpath ¢, of p,, labelled by w}w% which lies in
the closed C' = C(6, v)-neighborhood of [ X7, X4], consequently, ¢, C Oc+.(H).
Note that C' depends only on 4, y, h but does not depend on n, k and g,.

Hence, for each natural n > N we obtained elements u,,v,, z, € G with
lun|c, vnla, |2nle < C + ¢ and u,y™v, ' € H, v,h"z,t € H (see Figure 3).
There are infinitely many such n and only finitely many possible u,,, v,, 2, hence
for some indices 4,j € N, ¢ < j, one will have u; = u;, v; = v;, 2; = z;. Thus,
uiyivi_l € H, uiiji_l € H, implying viyj_ivi_l € H. Similarly, vihj_ivi_l € H.

Thus for each y € K of infinite order we found an element a = a(y) € G
and [ = I(y) € N satisfying ay'a™' € H and ah'a™! € H (in the case when
E(y) = E(h), a = go, | = mly).

This implies that for arbitrary y1,y2 € K with o(y;) = oo, i = 1,2, we have
a; = a(y;) € G and t; = t(y;) € N such that yf € ai_lHai and Al € ai_lHai,
i = 1,2. Therefore, h''*> € a;7'Hay N a; *Hay, and, thus, this intersection
is infinite (because this subgroup contains an element of infinite order). But
by Lemma 3.10 there can be only finitely many of such conjugates of H in G,
therefore, there are aq,as,...,as € G such that for every element y € G of
infinite order one has .

yl S U ai_lHai
i=1
for some | € N, which contradicts to Lemma 4.6 because of Remark 2 and the
conditions of the proposition.

Hence there is an element # € K such that for any [ € N, 2! ¢ HY . It

follows that x has infinite order and (x)o, N HY = {15}. O

9 Proofs of Theorems 1,2

Proof of Theoreml. The direction (b) = (a) is trivial, so let’s focus on the
direction (a) = (b).

Using Proposition 1 for every ¢ = 1,2,...,s one finds Z; € K such that
o(#;) = 0o and (F;)eo N HY = {lg}. Now as in the proof of the Lemma
4.6 we narrow down this collection to {x1,za,...,x,} satisfying the properties:
E(z;) # E(x;) for i # j, and for every k = 1,2,...,s there is i € {1,2...,r}
such that (z;, )0 N HY = {16}.

Assuming the contrary of the statement, for every natural number n and
2p = aPal-...-a" € K we obtain [, € N such that zl» € HFU...UHY. Thus,
there is an index ko € {1,2,...,s} such that zl» € Hg) for every n € A where
A is an infinite subset of N. Without loss of generality, assume ky = 1.

Thus, for every n € A there exists g, € G such that g,z g1 € Hy, hence
gn2Flng-t € Hy for any k € N. Now, as in the proof of the Proposition 1, we
take words wi,ws, ..., w, representing xi,xs,...,x, and apply Lemma 3.3 to
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the path p,, in I'(G, A) starting at g,, and labelled by (wfw¥ ...w?)*». Hence,
for every sufficiently large n € A and k € N we find a subpath ¢, of p, labelled
by w] ... w? which is (C + ¢)-close to Hy where C = C(d,wy,...,w,) (but is
independent of n,k and g, ) and ¢ is the quasiconvexity constant of Hj.

Again, similarly to the proof of Proposition 1, for each i = 1,2,...,r we
obtain an element v; € G and m; € N such that v;z]"v; leH 1. In particular
that should hold for i = 7. The contradiction achieved finishes the proof of the
theorem. [

Proof of Theorem2. Assume the contrary. Then using Theoreml we obtain
an element x € K, o(z) = oo, such that (z)o. N(HFUHS U...UHE) is trivial,
hence ()¢ N HY = {1g} for every j =1,2,...,s.

By the conditions U = UZZI P;, where each P is a quasiconvex product,
k=1,...,q. Since any cyclic subgroup is quasiconvex in G (by lemmas 3.2,3.1),
and in view of Remark 4, application of the Lemma 3.12 to the intersection

() = (&) nU = | () N )
k=1

shows that it is finite (because each product S; will be trivial). A contradiction
with o(z) = co. Hence, the theorem is proved. O

Corollary 3. Let U be a finite union of quasiconver products having infinite
index in a hyperbolic group G. Then U is not quasidense but its complement
U = G\U is quasidense in G.

Proof. Let g1, 92, . ..,9n € G. It is easy see that the sets | ; Ug; and U~'U
are finite unions of quasiconvex products of infinite index.

Thus, the fact that U C G is not quasidense follows from the definition of a
quasidense subset and Theorem2 applied to the case when K = G.

By Theorem2, there exists y € G such that y ¢ U~1U. Consider an arbitrary
z€G. If x € U then xy € U (because of the choice of i) hence

GCcUu@uuy . 0O

6 Boundary and Limit Sets

Let X be a proper geodesic metric space with metric d(-,-). Assume also that
X is d-hyperbolic for some § > 0. Further in this paper we will need the
construction of Gromov boundary X for the space X (for more detailed theory
the reader is referred to the corresponding chapters in [4],[2]). The points of
the boundary are equivalence classes of geodesic rays 7 : [0,00) — X where rays
r1, 72 are equivalent if sup{d(r1(¢),r2(t))} < oo (& h(r1,72) < oo — Hausdorff
distance between the images of these rays).

For another definition of the boundary, fix a basepoint p € X. A sequence
(z1)ien C X is called converging to infinity if

lm (z;|z;)p = oo .

1,]—00
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Two sequences (x;);en, (¥;)ien converging to infinity are said to be equivalent
if
lg&(%m)p =
The points of the boundary 0X are identified with the equivalence classes of
sequences converging to infinity. It is easy to see that this definition does not
depend on the choice of a basepoint. If « is the equivalence class of (z;);en We

will write lim z; = a.
1—00

It is known that the two objects defined above are homeomorphic through
the map sending a geodesic ray r : [0,00) — X into the sequence (T(i))ieN'

For any two distinct points a, 8 € 0X there exists at least one bi-infinite
geodesic 7 : (—o0, +00) — X such that lim r(—i) = « and lim r(7) = 5. We

1—00 1—00
will say that this geodesic joins « and f; it will be denoted («, ).

The spaces 0X and X UJX can be topologized so that they become compact
and Hausdorff (see [14],[4]).

Every isometry v of the space X induces a homeomorphism of X in a
natural way: for every equivalence class of geodesic rays [r] € 90X choose a
representative r : [0,00) — X and set ¢([r]) = [¢p o r].

For a subset A C X the limit set A(A) of A is the collection of the points
«a € 0X that are limits of the sequences from A.

Let Q be a subset of X containing at least two distinct points. We define
the convex hull CH () of © to be the set of all points in X lying on bi-infinite
geodesics that join elements from (2.

Below we list some known properties of limit sets and convex hulls:

Lemma 6.1. ([8, Lemmas 3.2,3.6]) Let 2 be an arbitrary subset of 0X having
at least two elements. Then

(a) CH(QY) is e-quasiconvex where € > 0 depends only on §;
(b) If the subset ) is closed then A (CH(QY)) = .

In this paper our main interest concerns hyperbolic groups, so further we
will assume that the space X is the Cayley graph T'(G, .A) of some d-hyperbolic
group G with a fixed finite generating set 4. Because of the natural embedding
of G (as a metric subspace) into I'(G,.A) , we will identify subsets of G with
subsets of its Cayley graph. The boundary 0G, by definition, coincides with the
boundary of I'(G, A) .

Left multiplication by elements of the group induces the isometric action
of G on I'(G, A) . Hence, G acts homeomorphically on the boundary 9G as
described above.

If g € G is an element of infinite order in G then the sequences (g%);en and
(97 %)ien converge to infinity and we will use the notation

lim g =¢*°, lim g '=g~ >
Lemma 6.2. ([8],[15]) Suppose A, B are arbitrary subsets of G, g € G. Then
(a) A(A) =0 if and only if A is finite;
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(b) A(A) is a closed subset of the boundary 0G;

(c) A(AU B) = A(A) UA(B);

(d) A(Ag) = A(A), go A(A) = A(gA);

(e) If A <X B then A(A) C A(B). Hence, A~ B implies A(A) = A(B).

(b),(c) and (d) are easy consequences of the definition and (a) is obtained after
a standard application of Ascoli theorem; (e) follows from (c) and (d).

If H is a subgroup of G, it is known that AH is either empty (if H is finite)
or consists of two distinct points (if H is infinite elementary) or is uncountable
(if H is non-elementary). In the second case, i.e. when there exists g € H such
that o(g) = oo and |H : ()] < 00, AH = {g™,g~>}.

Lemma 6.3. ([8, Lemma 3.3]) If H is an infinite subgroup of G then A(H)
contains at least two distinct points and the sets A(H), CH(A(H)) are H-
invariant, i.e. for everyh € H hoA(H)= A(H), h-CH(A(H)) = CH(A(H)).

As the hyperbolic group G acts on its boundary, for every subset Q2 C 0G
one can define the stabilizer subgroup by Stg(Q2) = {g € G| go Q = Q}. For
our convenience, we set Stg(0) = G.

It is proved in [4, thm. 8.3.30] that for any point a« € 0G St ({a}) is an
elementary subgroup of the group G (in fact, if a = ¢g* for some element of
infinite order g € G then

Sta({a}) = E*(g) = {z € G| 3n € Nsuch that zg"z~! = g"} < E(g);

otherwise the subgroup St ({a}) is finite). In addition, if g € G, o(g) = oo,

then Sta({g>,97>}) = E(g).

Remark 5. For an arbitrary subset A of G Commg(A) C Stg(A(A)).
Indeed, if g € Commg(A), then gA = A, hence after applying claims (d),(e)

of Lemma 6.2, we obtain g o A(4) = A(gA) = A(A), i.e. g € Sta(A(A)).

Remark 6. Suppose Q2 C OG has at least two distinct points. Denote by
c(2) € IG the closure of  in the topology of the group boundary. Then
A(CH(Q)) = ().

Indeed, since CH(2) C CH (cl(£2)) we obtain
A(CH(Q)) CA(CH(cl())) = () ,

where the last equality is achieved using Lemma 6.1. Finally, A (CH(Q)) is a
closed subset of OG containing © (by part (b) of Lemma 6.2), which implies
statement of the Remark 6.

The following lemma (in a slightly different form) can be found in [15, Cor.
to Lemma 13]:

Lemma 6.4. Suppose Q) C OG is a subset having at least two distinct points.
Then A(Sta(Q)) C cl(9).
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Proof. Since 2 has at least two points, it makes sense to consider the convex
hull CH(2). Observe that for any g € Stg(R2), gCH(Q2) C CH(R): the left
translation by the element g € G is an isometry of I'(G,.A) , therefore a bi-
infinite geodesic («, 8), o, € € goes to a bi-infinite geodesic (g o a,g 0 §) C
CH(Q) since 2 is Ste(Q2)-invariant.

Fix any point z € CH(f). By our observation above, Stg(Q)x C CH(Q),
hence A(Ste(Q)z) € A(CH(S)). The claim of the lemma now follows by
applying Lemma 6.2.(d) and Remark 6. O

7 Known Results and Examples

In this section we list some known results about the boundary and limit sets
and give (counter)examples in order to motivate the rest of the paper where we
extend these results to larger classes of subsets.

Result 1: if A and B are quasiconvex subgroups of a hyperbolic group G
then A ~ B if and only if A(A) = A(B).

Indeed, the necessity follows by Lemma 6.2.(e). For proving the sufficiency
we note that by [15, thm. 8] A(AN B) = A(A) NA(B) = A(A) = A(B) . But
ANB < Aand AN B < B, so, by Lemma 3.6 and [15, thm. 4]

|A:(ANB)| < o0, |B: (ANB)| < 0,

i.e. the subgroups A and B are commensurable. Hence A ~ B.
However, if one removes at least one of the conditions on A and B, the claim
of the result 1 fails:

Example 1. Let G = F(x,y) — the free group with two free generators x, y.
Define A = {2 | n > 0}, B = {z"y™ | 0 < m < n}. These are quasiconvex
subsets (not subgroups) of G because any prefix of an element from one of these
sets is still contained in the same set. Evidently, A(A) = {z*°}.

Suppose (z"1y"™), oy, 0 < my <y, 7 € N, is a sequence converging to infinity in
B. If the sequence of integers (n;);en is bounded then the sequence (m;);ey is
also bounded, hence the set the group of elements in (z"iy™), _y is finite which
contradicts to the definition of a sequence that converges to infinity. Thus,
sup{n;} = oo and, passing to a subsequence, we can assume lim n; = co. Then

€N 1—00
(x™y™ 2" )1, =ni — 00 as i — 0o ,

thus, lim (z"y™?) = lim ™ = x°°. Therefore, A(B) = {z>*} = A(A4) but

A% B.

Example 2. If G is an arbitrary hyperbolic group and H is its infinite
normal subgroup of infinite index, then H is not quasiconvex by Corollary 2
and A(H) = A(G) = 0G by [8, Lemma 3.8.(2)], thus the quasiconvexity of A, B
in result 1 is important.

Result 2: If A is a quasiconvex subgroup of a hyperbolic group G then we
have an equality in the Remark 5: Commg(A) = Stg(A(A)).
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By [15, thm. 17] or [8, cor. 3.10], VNg(A) = Ste(A(A)) and VNg(A) =
Commg(A) by Remark 1.

Again, both of the conditions of A being a subgroup and A being quasiconvex
are not redundant:

Example 3. Choose G = F(x,y) as in example 1 and let
B={z"y" |0<m<n®*n>0}, C={z"|neN}, A=BuUC .

A is quasiconvex since B and C are, A(A) = A(B) UA(C) = {z*,z7>}
(AB = {z*} by a similar argument to the one presented in example 1). Then
Sta (A(A)) = (z) — the infinite cyclic subgroup generated by x.

Let’s show that Commg(A) = {1¢}. By Remark 5 and since Commg(A) is a
subgroup, it is enough to prove that =% ¢ Commg(A) for any integer k > 0.
Indeed, for any n > k x"’ky"Q € 2 %A and

a (" Fy™* A) = d (a7 @Ry ) = n? (0 - k) = 20k — k2 - o0

when n — oco. Implying that 2= *A % A.

Example 4. Consider a finitely generated group M containing a normal sub-
group N <<M and an infinite subnormal subgroup K <1N such that |M : N| = oo,
IN : K| = 0o and for any z € M\N zKz ' N K = {15} (for example, one
can take M =7 wr 7).

Then M is isomorphic to a quotient of some free group G of finite rank by its
normal subgroup H: M =2 G/H. Let ¢ : G — G/H be the natural homomor-
phism and A, B < G be the preimages of K and N under ¢ correspondingly.
Then H< A< B<G, |G: Al =00. A(A) = A(B) = A(G) = 0G by [8, lemma
3.8,(2)], hence St (A(A)) = G.

We claim that Commg(A) = B. As we know Commg(A) = VNg(A), there-
fore B C Commg(A). Now, for an arbitrary g € G\B, by construction, one
has (AN gAg=t) = {1}, hence (AN gAg~!) C H. Since K is infinite, we get
|A: H| = oo, and thus, |[A: (AN A9)| = oo, so, g ¢ Commg(A).

In this example the subgroup A of G is not quasiconvex and

ISt (A(A)) : Comme(A)| = oc.

Result 3: ([1, Thm. 2J,[8, Lemma 3.9]) If A is an infinite quasiconvex
subgroup of a hyperbolic group G then A has a finite index in its commensurator
Commg(A).

By Lemma 2.1, the condition |Commg(A) : A| < oo is equivalent to
Commg(A) 2 A .

It is easy to construct an example of a quasiconvex subset (not subgroup) A
with exactly one limit point demonstrating that the latter fails, more precisely,
Commg(H) can have two limit points.

However, in the next section this result will be extended to the class of all
quasiconvex subsets A with card(A(4)) > 2.
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Result 4: Let A be a quasiconvex subgroup of a hyperbolic group G. Then
Commg(A) is quasiconvex.

If the subgroup A is infinite, this is a consequence of the result 3 by Remark
2. On the other hand, if A is finite, then Commg(A) = G.

Below we give an example of an infinite quasiconvex set A C G such that
Commg(A) is not quasiconvex.

Example 5. We use the counterexample 12 from [15]. Again, let G =

F(z,y) be the free group of rank 2. Let K = (z"yxz~" | n > 0). It is shown in
[15] that A(K) is not a limit set of a quasiconvex subgroup in G (because A(K)
is not ”symmetric”: x> € A(K) but 27> ¢ A(K)).
As the subgroup K is infinite, we can consider the convex hull A = CH (A(K ))
By Lemma 6.1 A is quasiconvex and A(A) = A(K) ( A(K) C 9G is closed by the
claim (b) of Lemma 6.2 ). K C Commg(K) C Ste(A(K)), hence, as we saw
in the proof of Lemma 6.4, A is K-invariant. Consequently, K C Commg(A).
Remark 5 and Lemma 6.4 imply

A(K) C A(Commg(A)) C A (Sta(A(A))) € A(A) = A(K) .
Thus A(Commg(A)) = A (Ste(A(A))) = A(K), therefore the subgroups
Commg(A) and St (A(A)) are not quasiconvex.

In the next section we are going to extend the results 1-3 to a broader class of
quasiconvex subsets of the hyperbolic group G. In particular, we will substitute
the requirement for A and B to be subgroups by a weaker condition.

8 Tame Subsets

Again, let G be a §-hyperbolic group with fixed finite generating set .A.

Definition. A subset A of the group G will be called tame if A has at least
two limit points on G and A < CH(A(A)). I.e. there exists v > 0 such that
A C 0,(C) where C = CH(A(A)).

In particular, this definition implies that any tame subset is infinite.

Remark 7. If A and D are subsets of G such that A =~ D and A is tame then
D is also tame.

Indeed, By Lemma 6.2.(e) A(A) = A(D), hence,
D <X A=CH(A(A)) =CH(AD)) .
Thus ”tameness” of a subset is preserved under the equivalence relation ”~".

Lemma 8.1. Let A, B,C, D be non-empty subsets of the group G where A and
B are tame, C is finite and D is arbitrary. Let H < G be an infinite subgroup.
Then the following sets are tame: 1) AUB; 2) AUC; 8)A-C; 4) D-A; 5) H.

Proof. 1) Since A(A4),A(B) C A(AU B), we have
CH(A(A)) UCH(A(B)) CCH(A(AUB)) .
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Figure 4

A < CH(A(A)) and B < CH(A(B)) by conditions of the lemma, hence
AUB=CH(A(A))UCH(A(B)) < CH(A(AUB)) ,

which shows that AU B is tame.

2) and 3) are immediate consequences of the fact that AUC = A, A-C = A,
and Remark 7.

4) Denote K = C’H(A(A)). By definition, A < K, therefore, DA < DK.
Now, since for every y € D yK = CH(A(yA)) € CH(A(DA)), we obtain
DK C CH(A(DA)). Hence DA < CH(A(DA)).

5) The set C’H(A(H)) is H-invariant by Lemma 6.3, therefore, for any
x € CH(A(H)) we have He C CH(A(H)). But H < Hz, hence H is a tame
subset. [J

In particular, this lemma shows that any infinite set U that is a finite union
of quasiconvex products in a hyperbolic group G is tame.

In example 3 from section 7 we constructed a quasiconvex subset A in
the group G = F(z,y) with exactly two limit points z°°,2~°°. Therefore,
CH(A(A)) consists of one bi-infinite geodesic and CH (A(A)) NG = {a" | n €
7}. Now, for each n € N, 2"y™" € A and d (:c”y”2,C’H(A(A))) =n? — o0, as
n — 0o. Thus, the subset A from example 3 is not tame.

Lemma 8.2. Suppose A is a tame subset of a hyperbolic group G and B C G
is a quasiconver subset such that A(A) C A(B). Then A < B.

Proof. By the conditions of the lemma, A < CH(A(A)) = CH(A(B)).
Therefore, it remains to show that C H (A(B)) =< B, i.e. there exists » > 0 such
that CH (A(B)) C O,.(B).

Let € be the quasiconvexity constant for B. Consider any x € CH (A(B))
By definition, there exist «, € A(B) such that x € («, ).

Let 71,72 : [0,00) — T'(G,.A) be the geodesic half-lines obtained by bisecting
(o, B) at the point x. Thus, 71(0) = r2(0) = =, Zliglo r1(i) = a zli»rgo ro(i) = 0
(see Figure 4).
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There are sequences (a;);en and (b;);en in B converging to infinity such that
lim a; = «, lim b; = B. Hence, (r1(%)|a;)e — 00, (r2(7)|bi)s — 00 as i — oo.
11— 00 11— 00
Consequently, for some n € N we have

(ri(n)]an)e > 26, (ro(n)|bn)e > 26 . (%)
Remark 8. Let PQR be a geodesic triangle in I'(G,A) and (P|Q)r > 26.

Then d(R, [P, Q]) > 24.

Indeed, assume, by contradiction, that there exists S € [P, Q)] satisfying
d(R,S) < 26. By definition of the Gromov product,

DN | =

1
But d(P,S) + d(Q,S) = d(P,Q) since [P, Q)] is a geodesic segment, therefore
(PIQ)r < d(S,R) <24. A contradiction.
Consider, now, the geodesic quadrangle in I'(G,.A) with vertices a,, r1(n),
ro(n), bn. x € [r1(n),r2(n)] (Fig. 4). Applying (x) and the Remark 8 we obtain
d(sr:, [an,rl(n)]) > 20, d(a:, [bn,rz(n)]) > 20 .

Since the Cayley graph I'(G, A) is §-hyperbolic, all quadrangles are 20-slim,
thus

[r1(n),2(n)] C Oz ([an, 1(n)] U [by, 72(n)] U [an, by)) -

Consequently, d(z, [an, b)) < 25. an,b, € B and B is e-quasiconvex, therefore
[an,by] C O:(B).

So, d(x, B) < 26 + ¢ for every x € CH(A(B)). After denoting » = 2§ + ¢
we achieve CH (A(B)) C O,.(B). The Lemma 8.2 is proved. [

Corollary 4. Let A < B be subsets of G where A has at least two limit points
on OG and B is quasiconvez. Then Comme(A) < B, Stg(A(A)) < B.

Proof. By Remark 5 it is enough to prove the second inequality. Using
lemmas 6.4, 6.2 we get

A(StG (A(A))) C A(A) C A(B) .

Since any subgroup is a tame subset (Lemma 8.1), applying Lemma 8.2 we
obtain Stg(A(A)) < B. O

The statement of corollary 2 can be generalized as follows:

Corollary 5. Let G be a hyperbolic group and let U be a finite union of qua-
siconvex products of infinite index in G. Suppose A C U is an infinite subset.
Then |G : Commg(A)| = co.

22



Proof. First, notice that since A is infinite, U is also infinite, hence U has
an infinite member H < G of infinite index. Therefore, G is non-elementary.
There are two possibilities: either card(A(A)) <1 or card(A(A)) > 2.

In the first case card(A(A)) =1 (by Lemma 6.2.(a)), so A(A) = {a} € 0G.
Hence Stg(A(A)) = Ste({a}) is an elementary subgroup, thus Commeg(A) is
also elementary. Consequently, |G : Commg(A)| = co.

In the second case, when card (A(A)) > 2, we can use corollary 4 to obtain
Commeg(A) X U. But if Commeg(A) were quasidense (or, equivalently,
|G : Commg(A)| < 00), we would have G < Commg(A) X U, so U would have
to be also quasidense. The latter contradicts to the statement of corollary 3. O

Now we are going to extend the results 1,2 to all tame quasiconvex subsets:

Proposition 2. Suppose A and B are tame quasiconver subsets of a hyperbolic
group G. Then A = B if and only if A(A) = A(B).

Proof. The necessity is given by Lemma 6.2.(e); the sufficiency immediately
follows from Lemma 8.2. O

Corollary 6. Let A be a subset of a hyperbolic group G having at least two
distinct limit points on OG. Then the following two conditions are equivalent:
1) A is tame and quasiconvez;

2) A~ CH(A(A)).

Proof. Denote C' = CH (A(A)). By Lemma 6.2.(b) A(A) is a closed subset of
dG, hence from Lemma 6.1.(b) we get A(4) = A(C). Therefore CH(A(C)) =C
implying that C' is tame. C' is quasiconvex by Lemma 6.1.(a).

Now, 2) follows from 1) by Proposition 2.

1) follows from 2) because the equivalence relation ”a” preserves quasicon-
vexity and ”tameness” of a subset. [J

Proposition 3. For any tame quasiconvex subset A of a hyperbolic group G

Commg(A) = Stg(A(A)).

Proof. By Remark 5 it is enough to show that St (A(A)) € Comme(A).
Take an arbitrary g € St (A(A)). Then A(gA) = go A(A) = A(A). The subset
gA is tame and quasiconvex since A is so, hence, by Proposition 2, gA ~ A.
Thus, g € Commg(A). Q.ed. O

Proposition 4. Let G be a hyperbolic group and let A C G be a quasiconvex
subset that has at least two distinct limit points on the boundary OG. Then
Sta(A(A)) = A. Consequently, Commg(A) < A.

Proof. Denote H = St (A(A)). Using lemmas 6.2.(b) and 6.4 we obtain
A(H) C A(A). H < G is a subgroup, hence it is tame (Lemma 8.1); A is
quasiconvex by the conditions. The statement of the proposition now follows
from Lemma 8.2. O

The Proposition 4 generalizes the result 3 from section 7.
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Now, it is easy to see that the set A from example 5 in section 7 is tame
and quasiconvex, thus, Comme(A) = Ste(A(A)). However Comme(A) is not
quasiconvex. Thus we can not extend the result 4 from section 7 in the same
way we did the previous ones.

9 Proof of the Theorem 3

A subset B of the group G will be called normal if for every g € G BY = B.

Lemma 9.1. Suppose G is a non-elementary hyperbolic group and A is its
subset containing an infinite normal subset B. Then A is quasiconvex if and
only if it is quasidense in G.

Proof. The sufficiency is trivial (see part 3) of Remark 3). To show the
necessity, first we observe that Commg(B) = G, hence Stg(A(B)) = G by
Remark 5. Since B is infinite A(B) is a non-empty subset of the boundary
O0G, thus there exists @ € A(B). Now, if A(B) = {a} then, as we know,
G = Stg(A(B)) = Ste({a}) is an elementary subgroup of G, but G is non-
elementary. Therefore A(B) has at least two distinct points. Now we can apply
Lemma 6.4 to obtain

0G = A(G) = A (Stq(A(B))) C A(B) C oG

and conclude that A(B) = 0G. B C A, thus A(4) = JG. Finally, since G is a
tame subset of itself (by Lemma 8.1) and A is quasiconvex, we apply Lemma
8.2 and achieve G < A. O

Proposition 5. Let G be a hyperbolic group, K, H1,...,Hs be its subgroups,
where K is non-elementary and H; are €;-quasiconvez for all j =1,2,...,s. If

S
K < U HJG then for some k € {1,...,s} and g € G one has K < H}, i.e. the
j=1
index |K : (K N HY)| is finite.
Proof. Denote ¢ = max{e1,...,es} and assume the contrary to the statement
we need to prove. Then by Theorem1 there exists an element x € K of infinite
S

order satisfying (x) N U HJ-G = {l¢}. Now, since K is non-elementary we can
j=1
apply Proposition 1 to obtain an element y € K with o(y) = oo such that
(x)% N (y) is trivial. Consequently, (x) N (y)¢ = {15}.
By the conditions of the proposition

KCO Hf bizo OHJGbi
i=1 \j=1 i=1 \yj=1

for some by,bs,...,b. € G. For every n € N z"y"™ € K, hence there exist
jo € {1,...,s} and ip € {1,...,r} such that z"y" € (H;,)“ - b;, for infinitely
many n € N. Without loss of generality, assume jo = 1, 1o = 1.

S
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Let w1, ws, w3 be words in alphabet A representing elements x, y, bl_1 corre-
spondingly.

Observe that the word (wfwhws)! represents the element (z"y"b;*)!. For
infinitely many n € N, n > N, there exists g, € G such that x"y”bfl €
gnH1g, !, thus, (gc”y"bfl)l € goHig, ! for all | € N,

For any such n and [, define the points Y; in I'(G, A) , j = 0,1,...,2l,
as follows: Yy = gn, Y1 = gpx™, Yo = gnxny"bfl, Y; = gnx"y"bl_lx", Y, =
gn(x”y"bl_l)Q, e, Yy = gn(x”y"bl_l)lflz", Yo = gn(x”y”bl_l)l. Consider
the path ¢ starting at Yy and labelled by the word (wlwhws)!. Thus, q ends
at Yy and passes through each Y;, j = 1,...,2] — 1. By lemmas 3.2 and 3.1
applied to the segment of ¢ between Y; and Yj; and the geodesic [Y}, Y] 1], for
each j = 0,...,2l — 1, there exists a constant v = v(wy,ws,ws) > 0 such that
qC OV(D/(], ceey }/21])

By the choice of y and Lemma 4.5 there exists s = s(x,y,b1) > 0 such that
(z7"|y™) 1 < 3¢ and (byy by H2™) 1, < 2 for all n.

Denote Cy = s + |b1|g. Then, for any odd j € {1,2,...,20 — 1},

(Yio1Yj1)y, = @ "y"b; Die < (@ " y™")1e + Ibile < Co.
And for any even j € {1,2,...,2] — 1},
(Yic1lYi1)y, = (biy "|2")1e < (bry™ "1 Ha™ )1 + b1l < Co.

Choose an arbitrary C; > 12(Cy + ). Lemma 3.2 implies that for any
sufficiently large n, ||[Y;, Y;+1]l| > C1, 7 = 1,2,...,2l — 1, hence, we can use
lemmas 3.4 and 3.5 to obtain

21Cy
[Y07 s 7Y21] c 0200([}/07}/21]) and ”D/Oa )/21”‘ > H[YO7 s 7}/21]”/2 2 T :

Let k be an even number from the set {{ — 1,I}. Then the subpath p of
q between Yj, and Yj41 is labelled by the word wy and p C O, ([Y, Yi+1])-
As we showed, there are points U,V € [Yp, Yo] such that d(Yy,U) < 2C; and
d(Yi41,V) < 2Cy. Since the quadrangles in a d-hyperbolic space are 26-slim,
we obtain [V, Yiy1] C Oacy126([U, V]). Applying lemmas lemmas 3.4 and 3.5

to [Yo,..., Y] and [Yiy1,...,Ys] we achieve
Yy,....,Y; Ci(l—-1
d(Yo,U) > d(Yp, Yy) — 2Co > M —9Cp > % — 20, and
[[Yit1, -, Yol Cil

d(V,Y) > d(Yiq1, Yor) —2C > —2Cy > - 2Cy .

2
Hence, if | € N is sufficiently large, we will have d(Yp, Ya;) > 2|g.|c,
d(YE]a U) > ‘gn|G and d(V, Yv2l) > |gn|G (andv Simﬂarly, d(Uv Y2l) > |gn|Ga
AV, o) > lgnlcs).
Let X; = lg, X5 = gn(z"y"b7Y)lgt € H, for infinitely many n € N.
By Lemma 4.1 applied to the geodesic quadrangle XyYyYs; X5, the subsegment
[U, V] of [Yy, Yy lies in the 26-neighborhood of [ X, X1] and [Xg, X1] C O (H;)
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(for infinitely many n and sufficiently large 7). Accumulating all of the above,
we obtain
P C Outac,+26+e(Hi)

(for infinitely many n € N and sufficiently large [ = [(n) € N). As in the proof
of Proposition 1, the latter implies that for some ¢ € N we have 2t € HE — a
contradiction to the construction of x.

The proposition is proved. [

Proof of Theorem3. It is given that A = af Ua§ ... Ua$ for some elements
ai,...,as € G.

Suppose that A is quasiconvex. A is infinite, therefore by Lemma 9.1 the
subset A is quasidense in G, hence

G=zAcC| ).
j=1

But since G is non-elementary, |G : (a;)9| = oo for each j = 1,2,...,s, and
for any g € G. Thus, we achieve a contradiction with Proposition 5 applied to
K=G. Qed O
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