VIRTUALLY COMPACT SPECIAL HYPERBOLIC GROUPS ARE
CONJUGACY SEPARABLE

ASHOT MINASYAN AND PAVEL ZALESSKII

ABSTRACT. We prove that any word hyperbolic group which is virtually compact special
(in the sense of Haglund and Wise) is conjugacy separable. As a consequence we deduce
that all word hyperbolic Coxeter groups and many classical small cancellation groups
are conjugacy separable.

To get the main result we establish a new criterion for showing that elements of prime
order are conjugacy distinguished. This criterion is of independent interest; its proof is
based on a combination of discrete and profinite (co)homology theories.

1. INTRODUCTION

One of the main themes of Geometric Group Theory is the study of groups which
act on non-positively curved spaces. Two prominent classes of such groups is the class
of hyperbolic groups (defined by Gromov in [13]) and the class of (virtually) special
groups (introduced by Haglund and Wise in [I6]). The intersection of these two classes
is quite large and its elements, virtually special hyperbolic groups, have particularly nice
properties.

Recall that a finitely generated group G is said to be hyperbolic if its Cayley graph
is a d-hyperbolic metric space, for some 6 > 0 (see, for example, [2]). On the other
hand, G is virtually compact special, if there is a finite index subgroup H < G, such
that H is isomorphic to the fundamental group of a compact special cube complex, whose
hyperplanes satisfy certain combinatorial properties (see [10, Sec. 3]).

Since the original work of Haglund and Wise [16], many hyperbolic groups have been
shown to be virtually special. For example, in the paper [15] Haglund and Wise showed
that hyperbolic Coxeter groups are virtually compact special. In [34] Wise proved the
same for finitely generated 1-relator groups with torsion, while in [I] Agol showed this
for fundamental groups of closed hyperbolic 3-manifolds. In fact, Agol [1] proved that
any hyperbolic group admitting a proper cocompact action on a CAT(0) cube complex is
virtually compact special.

In this paper we study conjugacy separability of virtually compact special hyperbolic
groups. Recall, that a group G is conjugacy separable if for arbitrary non-conjugate
elements z,y € G there is a homomorphism from G to a finite group F' such that the
images of z and y are not conjugate in F. Conjugacy separability can be regarded
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as an algebraic analogue of solvability of the conjugacy problem in a group and has a
number of applications. Most prominently it is used in proving residual finiteness of outer
automorphism groups (see, for example, the discussion in [25, Sec. 2]).

Conjugacy separability is usually not easy to show, and, until recently, only a few classes
of groups were known to satisfy it: virtually free groups [10], virtually surface groups [23]
and virtually polycyclic groups [11], 29]. Note that in general conjugacy separability does
not pass to finite index overgroups [12] or to finite index subgroups [24], therefore the
adjective “virtually” is important.

A group G is said to be hereditarily conjugacy separable if every finite index subgroup of
G is conjugacy separable. In [25] the first author showed that right angled Artin groups are
hereditarily conjugacy separable. This result was subsequently used to prove conjugacy
separability of Bianchi groups [7], 1-relator groups with torsion [26] and fundamental
groups of compact 3-manifolds [I7]. In fact, in [25] it was shown that any virtually
compact special group G contains a conjugacy separable subgroup of finite index. But
it is still unclear whether such G must necessarily be conjugacy separable itself. In the
present paper we prove this in the case when G is hyperbolic:

Theorem 1.1. Any virtually compact special hyperbolic group is hereditarily conjugacy
separable.

Conjugacy separability of torsion-free virtually compact special hyperbolic groups was
proved in [25] Cor. 9.11], so the actual novelty of Theorem is in handling groups
with torsion. In view of Agol’s result [I, Thm. 1.1], the above theorem shows that every
hyperbolic group, admitting a proper cocompact action on a CAT(0) cube complex, is
hereditarily conjugacy separable. This gives an abundance of new examples of (heredi-
tarily) conjugacy separable groups, some of which we mention in corollaries below.

For any Coxeter group W, Niblo and Reeves [27] constructed a cube complex C on
which W acts properly, and proved that the quotient complex X = W\C is compact if W
is hyperbolic. It follows that any hyperbolic Coxeter group is virtually compact special
(originally this is due to Haglund and Wise [I5]), hence we can use Theorem|L.1]to deduce:

Corollary 1.2. Any hyperbolic Coxeter group is hereditarily conjugacy separable.

Note that conjugacy separability of hyperbolic even Coxeter groups was proved in [6].

Another family of hyperbolic virtually compact special groups is given by groups with
finite small cancellation presentations. Indeed, in [33] Wise proved that many classical
small cancellation groups, including C’(1/6) and C’(1/4) —T'(4) groups, act properly and
cocompactly on CAT(0) cube complexes. It is well-known that such groups are hyperbolic,
so Agol’s result [I, Thm. 1.1] applies and, together with Theorem [1.1] it yields

Corollary 1.3. Let G be a group with a finite C'(1/6) or C'(1/4) — T(4) presentation.
Then G is hereditarily conjugacy separable.

Finally, Theorem implies that any group acting properly and cocompactly on the
hyperbolic 3-space is hereditarily conjugacy separable, because fundamental groups of
closed hyperbolic 3-manifolds are virtually compact special by a combination of results of
Bergeron and Wise [3] and Agol [1I]. Thus we obtain the following statement:
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Corollary 1.4. Any uniform lattice in PSLy(C) is hereditarily conjugacy separable.

The above corollary could also be proved by combining results of Chagas and the second
author [7, Thm. 2.5 or Thm. 2.7] with a different theorem of Agol from [I], claiming that
closed hyperbolic 3-manifolds are virtually fibered.

Let us now say a few words about the proof of Theorem[I.1} One of the main difficulties
in it is to separate conjugacy classes of torsion elements in a finite quotient. To this end
we come up with a new approach (see Proposition which employs (co)homological
methods and is based on a result of K.S. Brown [5] allowing one to distinguish conjugacy
classes of elements of prime order using group cohomology. In particular we obtain the
following quite general result.

Theorem 1.5. Let G be a residually finite group with ved(G) < oo. If G is cohomologi-
cally good then every element of prime order is conjugacy distinguished in G.

Recall that a residually finite group G is cohomologically good, if the inclusion of G in
its profinite completion induces an isomorphism on cohomology with finite coefficients.
An element g € G is said to be conjugacy distinguished if the conjugacy class ¢¢
closed in the profinite topology on G (thus G is conjugacy separable if and only if each
g € G is conjugacy distinguished). The claim of Theorem (1.5 ﬂ can be restated by saying
that two non-conjugate elements of prime order in GG are not conjugate in the profinite
completion G in other words, the embedding of G in G induces an injective map on the
sets of conjugacy classes of elements of prime order in G and in G. In Corollary we
prove that if, additionally, G is finitely generated then this map is actually a bijection (in

particular, every element of prime order in G is conjugate to some element in G).

To prove Theorem for a hyperbolic virtually compact special group G, we first
show that G is cohomologically good by proving that this property is stable under virtual
retractions (Lemma [3.1)), and combining this with some results from [16], 14, 20] (our
argument actually does not make use of the hyperbolicity of G and works, more generally,
for almost virtual retracts of right angled Artin groups — see Proposition [3.8). It follows
that Theorem can be applied to separate the conjugacy classes of elements of prime
order in GG. After this we prove that every torsion element of G is conjugacy distinguished
essentially by induction on its order.

Acknowledgements. The authors would like to thank Marco Boggi, Frédéric Haglund,
Dessislava Kochloukova, Ian Leary and Nansen Petrosyan for enlightening discussions.
The second author was supported by Capes and CNPq.

2. PRELIMINARIES

2.1. Notation. Given a group G, its subgroups K, H and an element g € G, we will
write Cy(g) = {h € H | hgh™" = g} to denote the centralizer of g in H, and Ny(K) =
{h € H|hKh'= K} to denote the normalizer of K in H.

2.2. Hyperbolic groups and quasiconvex subgroups. Recall that a geodesic metric
space Y is (Gromov) hyperbolic if there exists a constant ¢ > 0 such that for any geodesic
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triangle A in Y, any side of A is contained in the closed d-neighborhood of the union of
the other sides (cf. [2]). A subset Z C Y is quasiconvex if there is € > 0 such that for
any two points 21,20 € Z, any geodesic joining these points is contained in the closed
e-neighborhood of Z.

If G is a group generated by a finite set A C G, then G is said to be hyperbolic if
its Cayley graph I'(G,.A) is a hyperbolic metric space. Similarly, a subset S C G is
quasiconvez if it is quasiconvex when considered as a subset of I'(G, A).

Quasiconvex subgroups are very important in the study of hyperbolic groups. Such
subgroups are themselves hyperbolic and are quasi-isometrically embedded in G (see [2]).
Basic examples of quasiconvex subgroups in hyperbolic groups are centralizers of elements
(see [4, Ch. IIL.T", Prop. 3.9]); this fact will be important for our argument below.

2.3. Right angled Artin groups. A right angled Artin group is a group which can be
given by a finite presentation, where the only defining relators are commutators of the
generators. To construct such a group, one usually starts with a finite simplicial graph I"
with vertex set V and edge set E. One then defines the corresponding right angled Artin
group A = A(T") by the following presentation:

A= (V| [u,v] =1, whenever (u,v) € E),

where [u,v] = uvu~tv™! is the commutator of u and v.

For any subset S C V, the subgroup Ag = (S) < A is said to be a full subgroup of
A. Tt is easy to see that Ag is itself a right angled Artin group corresponding to the full

subgraph I's of I', induced by the vertices from S. Moreover, Ag is a retract of A — see
[25], Sec. 6].

Recall that a subgroup H, of a group G, is a virtual retract if H is a retract of some
finite index subgroup K < G. In other words, H C K and there is a homomorphism
p: K — H such that p(K) = H and p|y = idy.

Let VR denote the class of all groups which are virtual retracts of finitely generated
right angled Artin groups, and let AVR be the class consisting of all groups G such that
G has a finite index subgroup from VR. We are interested in these specific classes of
groups because of the following two results: in [16] Haglund and Wise proved that any
virtually compact special group G belongs to the class AVR, and in [25] the first author
showed that any group H € VR is hereditarily conjugacy separable.

2.4. Profinite topology. The profinite topology on a group G is defined by taking finite
index subgroups as a basis of neighborhoods of the identity element. This topology is
Hausdorff, i.e., {1} is a closed subset of G, if and only if the group G is residually finite.
In the latter case, G embeds in its profinite completion, G , and the profinite topology on
G is precisely the restriction of the natural topology of G to G.

A subset S C G is said to be separable if it is closed in the profinite topology on G. Thus
an element = € G is conjugacy distinguished if its conjugacy class 2% = {grg™! | g € G}
is separable in GG. It is not difficult to see that the latter is equivalent to the property
that for any element y € G, which is not conjugate to x, there is a finite group F' and a
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homomorphism ¢ : G — F', such that ¢(y) is not conjugate to ¢(z) in F. It follows that
G is conjugacy separable if and only if all of its elements are conjugacy distinguished.

2.5. Criteria for conjugacy separability. The next standard observation will be useful
(cf. [24, Lemma 7.2)):

Lemma 2.1. Let K be a subgroup of finite index in a group G and let v € K. If x is
conjugacy distinguished in K then x is conjugacy distinguished in G.

The following criterion was discovered by Chagas and the second author in [7]:

Proposition 2.2 ([7, Prop. 2.1]). Let H be a normal subgroup of index m € N in a group
G and let x € G be any element. Suppose that H is hereditarily conjugacy separable and
the centralizer Cg(x™), of x™ € H, salisfies the following conditions:

(i) x is conjugacy distinguished in Cg(x™);
(i) each finite index subgroup of Cq(x™) is separable in G.

Then x is conjugacy distinguished in G.

Note that the original condition (i) from [7, Prop. 2.1] required Cz(2™) to be conjugacy
separable, however, it is easy to see that the proof (see also [0, Prop. 2.2] for an alternative
argument) only uses the weaker assumption that x is conjugacy distinguished in Cq(2™).

2.6. Profinite topology on virtually compact special groups. Let VCSH denote
the class of all virtually compact special hyperbolic groups.

Remark 2.3. The class VCSH is closed under taking finite index subgroups and over-
groups.

Indeed, it is immediate from the definitions that a finite index subgroup/overgroup
of a virtually compact special group is still virtually compact special. On the other
hand, it is well-known that a group is hyperbolic if and only if a finite index subgroup is
hyperbolic (for instance, this follows from the fact that hyperbolicity is invariant under
quasi-isometries — see [4, Ch. IIL.H, Thm. 1.9]).

The next statement easily follows from the work of Haglund and Wise in [16].
Lemma 2.4. Suppose that G € VCSH and g € G. Then

(a) the centralizer Cg(g) also belongs to VCSH;
(b) every finite index subgroup of Cs(g) is separable in G.

Proof. Fix some finite generating set A of G. Since the group G is hyperbolic, it is well-
known that centralizers of elements in G are quasiconvex (see, for example, [4, Ch. IIL.T,
Prop. 3.9]). Hence C¢(g) is quasiconvex, so it is also hyperbolic (cf. |2, Lemma 3.8]). In
[16, Cor. 7.8] Haglund and Wise proved that any quasiconvex subgroup of G is virtually
compact special, thus (a) is proved.

To prove (b), note that every finite index subgroup N < Cg(g) is also quasiconvex
(because there is a constant ¢ > 0 such that every element of C(g) is at distance no more
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than ¢ from an element of N in the Cayley graph I'(G,.A)). Therefore N is separable in
G by [10, Cor. 7.4 and Lemma 7.5]. O

Lemma 2.5. Any virtually compact special group G has a finite index normal subgroup
H <G such that H € VR, H is torsion-free and hereditarily conjugacy separable.

Proof. In [16] Haglund and Wise proved that every virtually compact special group G has
a finite index normal subgroup H <1G such that H € VR. Now, H is torsion-free as right
angled Artin groups are torsion-free, and H is hereditarily conjugacy separable by [25]
Cor. 2.1]. O

3. COHOMOLOGICAL GOODNESS AND ITS APPLICATIONS TO CONJUGACY
SEPARABILITY

Recall that a group G is cohomologically good, if the natural embedding G — @, of
the group in its profinite completion, induces an isomorphism on cohomology with finite
coefficients. This notion was originally introduced by Serre in [30, Exercises in Sec. 1.2.6].

Cohomological goodness of residually finite groups behaves nicely under certain free
constructions and is stable under group commensurability (see [14], 20]). We begin this
section with proving another useful permanence property:

Lemma 3.1. Suppose that G is a residually finite cohomologically good group and H is
a virtual retract of G. Then H is cohomologically good.

Proof. Since the cohomological goodness passes to subgroups of finite index (see [14]
Lemma 3.2]), we may assume that H is a retract of G. Let f : G — H be a retraction.
Then the profinite topology on G induces the full profinite topology on H (see, for ex-
ample, |28, Lemma 3.1.5]), hence the natural embedding ¢ : H — G induces an injective
continuous map i : H — G (cf. [28, Lemma 3.2.6]). Therefore, the functorial property
of profinite completions shows that the retraction f induces a retraction f: G — o ,
giving rise to the following commutative diagram, where the vertical maps are the natural
embeddings of the residually finite groups in their profinite completions:

=

)

(1) H

=)

i

f

H G

If M is a finite H-module, we can turn it into a G-module by letting the kernel of f
act trivially on M. Then for any n € N U {0}, induces the following commutative
diagram of cohomology groups:
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. 7 .
H(H, M) —— H"(G, M)
resﬁ resa

H G
H"(H, M) H"(G, M)

i*

Since f o1 =1idy and f 0i = idg, we can deduce that ¢* o f* and o f are identity
maps on H”(H M) and H"(H, M) respectively. In particular, the map f* is injective
and the map ¢* is surjective.

Since G is cohomologically good the right vertical arrow is a bijection and we need
to show that so is the left vertical arrow. To see the injectivity, pick an element h €

H"(H,M). Then (f* o resg) (h) = (resg o f*) (h), implying that h = 0 if resg(h) = 0.

For surjectivity, observe that i* o res& = resf o i* and the map on the left-hand side is
surjective, hence resf must also be surjective.
Thus res is an isomorphism, as required. 0

The next statement establishes a connection between cohomological goodness and sep-
arability of conjugacy classes of elements of prime order.

Proposition 3.2. Let G be a residually finite cohomologically good group of finite virtual
cohomological dimension. Suppose that G splits as a semidirect product G = H X (x),
where H <1 G is torsion-free and x € G has prime order p. Then the natural embedding
of G in G induces an injective map between the conjugacy classes of finite subgroups in
G and in G.

Proof. Fix any integer n > ved(G). Let I [respectively, I | denote the set of conjugacy
classes of subgroups of order p in G [respectively, in @] For every conjugacy class o € [
choose any subgroup C,, of order p, representing it in . Since all elementary abelian
p-subgroups of G have rank at most 1 (as G = H x (x) and H is torsion-free), we can
apply a classical result of Brown (cf. Cor. 7.4 and the Remark below it in Ch. X of [5]),
claiming that there is a canonical isomorphism

(2) n: H'(G,Z/p) — || H"(Na(Ca), Z/p).

ael

Denote N, = Ng(C,), a € I. The above isomorphism 7 can be defined as follows:
for each a € I, the inclusion N, — G induces the restriction homomorphism resﬁa

H™(G,Z/p) — H"(Na, Z/p), and n =[], res§. is the corresponding diagonal map.

For our purposes, it is actually more convenient to work with homology instead of coho-
mology. For each « € I, the inclusion N, < G induces the corestriction homomorphism
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cor§ : Hy(Na,Z/p) — H,(G,Z/p). This gives a natural homomorphism

(3) o+ @ Ha(Na, Z/p) = Ho(G,Z[p),

acl

defined by the property that the restriction of ¢ to each direct summand H, (N, Z/p) is
the map cor§, .

Since Z/p is a field, the contravariant functor Homg,,(—, Z/p) induces a natural isomor-
phism between Homg,,(H,(F,Z/p),Z/p) and H"(F,Z/p) for any group F' (for example
by the Universal Coefficient Theorem, cf. [I8 Sec. 3.1, pp. 196-197]). Applying this
functor to gives the map 7 from .

If the map ¢ was not injective then we would have a short exact sequence

{0} = K — @ Ha(Na, Z/p) 5 H,(G,Z/p) — {0},

ael

where K is a non-trivial vector space over Z/p. Since Z/p is a field, the functor
Homy,,(—,Z/p) is exact, so it would give a short exact sequence

{0} = H"(G,Z/p) > || H"(Na, Z/p) — Homy,, (K, Z/p) — {0}.

ael

The latter would contradict the fact that n is surjective, as Homg,,(K,Z/p) # {0}.
Therefore ¢ is injective. A similar argument shows that ¢ is also surjective, as 7 is
injective. Hence the homomorphism ¢ in (3] is an isomorphism.

In particular, we see that if a; and ay are distinct elements of I then

(4) p(Hn(Nay, Z/p)) N o(Hn(Nay, Z/p)) = {0} in H, (G, Z/p).

By the assumptions, for each £ = 1,2, G = H x C,,, i.e., G retracts onto C,,. There-

. ) N,
fore N,, also retracts onto C,,, and hence the corestriction homomorphism corcz’“ :
k

H,(Cs,,Z/p) = H,(N,,,Z/p) is injective. Since H,(C,,,Z/p) # {0} for k = 1,2 (as
Co, = Z/p), shows that the natural images of H,(C,,,Z/p) and H,(C,,,Z/p) in
H,(G,Z/p) must be distinct.

Now, arguing by contradiction, assume that there exist distinct ay,as € I such that
C,, is conjugate to C,, in G. We have the following commutative diagram coming from
the natural inclusions:

(5)

Since C,, is a closed subgroup of G , k=1,2, and G is dense in G , this diagram induces
the following commutative diagram of cohomology groups (for the vertical and diagonal
arrows see [30, Sec. 1.2.4 and Exercise 1) in Sec. 1.2.6]):
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(6) _ HNG.Z/p) )

G G

res Ca 1 & resca 9
resG

Hn(COtle/p) :GT Hn(G,Z/p) o Hn(CawZ/p)

Ca 1 res Ca x

where resg is an isomorphism by cohomological goodness of G.

Let us apply the Homg,(—,Z/p) functor to the diagram (6]). Pontryagin duality be-
tween cohomology and homology of profinite groups (see [28 Prop. 6.3.6]) says that

HomZ/p(H”(G Z]p),Z/p) is naturally isomorphic to H, (G Z/p). On the other hand,
for the discrete group G, Homg,,(H"(G,Z/p),Z/p) may not be, in general, isomorphic
to H,(G,Z/p). However, since Homg,,(H,(G,Z/p), Z/p) = H”(G,Z/p) (as observed
above), the space Homy,(H"(G,Z/p),Z/p) can be thought of as the double dual of
H,(G,Z/p). Since there is always a canonical embedding of a vector space into its double

dual, we obtain an injective homomorphism p : H,(G,Z/p) — Hn(@, Z/p), which fits
into the following commutative diagram:

(7) H,(G,Z/p) )

Hy(Cay, Z/p) —— Hu(G, Z/p) <~ Ho(Cos, Z/p)
where Hn(@, Z/p) is the profinite homology of @, Th = corgak and 7, = corg%, k=1,2.

By the assumption, there exists g € G such that Ca, = gCu,g~*. Hence we have

@

—C

ay )

ig jigCal

G0,

-

)

where i : G — G is the inner automorphism of G given by iy(h) = ghg™', for all h € @,
and ig4|c,, 1 Coy = Ca, is its restriction to Cy,. This leads to the following commutative
diagram between the corresponding homology groups:

Hn(é7 Z/p) <i HTL(Cal?Z/p) )

T

HTL(é? Z/p) 'L Hn<0a2> Z/p)

Note that the left vertical map is the identity on Hn(@,Z/ p), as it is induced by an

inner automorphism of G (this is easy to prove directly, or one can use [30, Execise 1)
in Sec. 1.2.5] and apply the Pontryagin duality between H"™ and H,). Therefore we

can conclude that 7 (Hy,(Ca,,Z/p)) = #2(Hp(Cay, Z/p)) in Ha(G,Z/p). Thus, in view of
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injectivity of the map p from (7)), in H,(G,Z/p) we must have that 7 (H,(Ca,,Z/p)) =
To(H,(Cay, Z/p)). The latter gives a contradiction with the property that the natural
images of H,(Cy,,Z/p) and H,(C4,,Z/p) in H,(G,Z/p) are distinct, which was proved
above as a consequence of the fact that the map ¢ in is injective.

Therefore, C,, cannot be conjugate to C,, in G if a1 # ag in I. This means that the
inclusion G — G induces an injective map from [ to I, as required. O

We are now ready to prove Theorem [1.5| stated in the Introduction.

Proof of Theorem[1.5 Let p be a prime and let « be an element of order p in G. By the
assumptions there exists a torsion-free normal subgroup H <1 G, which has finite index in
G. Denote G; = H(x) < G. Clearly G has finite index in G, and G; = H x(z). Therefore
G is residually finite and ved(G1) = ved(G) < oo. Moreover, G is cohomologically good
since this property passes to finite index subgroups and overgroups (see [14, Lemma 3.2]).
Thus the group G, satisfies all the assumptions of Proposition (3.2

Consider any element y € G, which is not conjugate to x. If y and x have different
orders, then, using residual finiteness of G1, we can find a finite quotient M, of G, where
the images of y and x still have different orders, and hence they will not be conjugate in
M. Therefore in this case M will be a finite quotient of (¢; distinguishing the conjugacy
classes of y and .

So, now we can suppose that y also has order p. If (y) is not conjugate to (x) in Gy,
then, by Proposition , these subgroups are also not conjugate in él. Hence y is not
conjugate to x in @1, i.e., y ¢ 2. Now, the conjugacy class z¢1 is closed in (31, as @1
is compact, so £ N G is a separable subset of G; which contains %! but avoids y. It
follows that there is a finite quotient of Gy distinguishing the conjugacy classes of x and
Y.

Thus we can further assume that (y) is conjugate to (z) in G;. Then hyh™ = z for
some h € G; and some z € (x). Note that z # x as y is not conjugate to = in Gy, by
our assumption. Consequently, z = £(z) # £(z) = x, where £ : G; — (x) is the natural
retraction (coming from the semidirect product decomposition of G). Since the group
(x) is abelian, we can conclude that {(y) = £(z) is not conjugate to (z) in it, so (z) is a
finite quotient of GGy distinguishing the conjugacy classes of x and y.

Thus we have considered all possibilities, showing that x is conjugacy distinguished in

G1. It remains to apply Lemma to conclude that z is conjugacy distinguished in G,
as required. O

Propositionshows that, under its assumptions, the natural inclusion G — G induces
an injective map between the conjugacy classes of prime order subgroups in G and in G.
To complement this, we will now show this map is also surjective, provided G has finitely

many conjugacy classes of elements of prime order (the latter will be satisfied if G is
finitely generated — see Corollary below).

Lemma 3.3. Suppose that H is a cohomologically good group with cd(H) = n < oo.
Then cd(H) < n; in particular, H is torsion-free.
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Proof. If A is any simple discrete H -module, then A is finite (because H is compact and
its action on A is continuous), so H""'(H,A) = H™'(H, A) = {0} by cohomological
goodness of H and the assumption that cd(H) < n + 1. Hence cdp(ﬁ) < n for every
prime p by [28, Prop. 7.1.4], therefore

cd(H) := sup{cdp(]:l) | p prime} < n.

Finally, since cd,(C) < cdp(}AI ) < oo for each prime p and every closed subgroup
C < H (cf. 28, Thm. 7.3.1]), and cd,(Z/p) = oo we can conclude that H cannot contain
subgroups of order p, for any prime p. Thus H must be torsion-free, as claimed. 0

Proposition 3.4. Let p be a prime and let G be a residually finite cohomologically good
group such that ved(G) < oo and G contains finitely many conjugacy classes of subgroups
(or, equivalently, elements) of order p. Then every element of order p in the profinite

completion G is conjugate to some element of G.

Proof. Arguing by contradiction suppose that there is some element v € (?, of order p,
such that C' = (v) is not conjugate to any subgroup of G. By the assumptions, only
finitely many conjugacy classes Cy, . .., Cg, of subgroups of order p in G , intersect GG non-
trivially. Since each C;, 71 =1,...,k, is a compact subset of G , avoiding the finite subgroup
C, there is a normal open subgroup U of G such that CU N Ci=0foreveryi=1,... k.
Since ved(G) < oo, G contains a normal torsion-free subgroup K of finite index. Then
the closure K, of K in G is naturally isomorphic to K and hence it is torsion-free by
Lemma [3.3] (K is cohomologically good by [28, Lemma 3.2.6} and cd(K) = ved(G) < 00).
So, after replacing U by U N K, we can assume that U is torsion-free.

Now, CU is an open subgroup of G so H = GNCU is a finite index subgroup of
G, whose closure H in G coincides with CU (see [28, Prop. 3.2.2]). Since H N C; = 0,
1=1,...,k, and every subgroup of order p in GG is contained in some C;, we can conclude
that H has no elements of order p. On the other hand, since CU is an extension of a
torsion-free group U by the cyclic group C', of order p, we see that C'U cannot contain
non-trivial elements of finite orders other than p. Recalling that H < C'U, allows us to
conclude that H is torsion-free.

Since |G : H| < oo we can argue as in the case of K above (using Lemma|3.3)) to deduce
that H = C'U must be torsion-free. The latter contradicts the fact that it contains C,
completing the proof of the proposition. O

Corollary 3.5. Suppose that G is a finitely generated residually finite cohomologically
good group with ved(G) < oo. Then G has finitely many conjugacy classes of subgroups
of prime power order, and the natural inclusion of G in G induces a bijection between the
conjugacy classes of elements (or subgroups) of prime order in G and in G.

Proof. By the assumptions, GG has a normal torsion-free finite index subgroup H. It follows
that there can be only finitely many primes p such that G contains some non-trivial p-
subgroup. Let p be such a prime. Since GG is cohomologically good, the same is true
for H, so we can use a theorem of Weigel and the second author [32, Thm. B] claiming
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that H"(H,7Z/p) is finite for every n > 0. Since Z/p is a field, the Universal Coefficient
Theorem tells us that the Z/p-vector space H"(H,Z/p) is the dual of H,(H,Z/p), hence
the latter is also finite. Therefore we can apply a result of Brown [5, Lemma 1X.13.2]
claiming that G contains finitely many conjugacy classes of p-subgroups.

Thus we can use Proposition [3.4] to conclude that the natural map between the conju-

gacy classes of elements of prime order in GG and in G is surjective. This map is injective
by Theorem so the corollary is proved. O

Remark 3.6. In the case when the group G is virtually of type FP, Thm. 8.2 in the
survey paper [19] asserts (without proof) that, with some extra work, a stronger version
of Corollary can be derived from a general result of Symonds [31, Thm. 1.1] (this was
also confirmed to us by Symonds in a private communication).

An important tool for establishing cohomological goodness was discovered by Grune-
wald, Jaikin-Zapirain and the second author, and, independently, by Lorensen:

Proposition 3.7 ([14, Prop. 3.6],[20, Cor. 3.11]). Let G = Hxp_at be an HNN-extension
of a cohomologically good group H, where the associated subgroups A and B are also
cohomologically good. Suppose that G is residually finite, H, A and B are separable in
G and the profinite topology on G induces the full profinite topologies on H, A, and B.
Then G is cohomologically good.

This allows us to show that in fact any group from the class AVR is cohomologically
good.

Proposition 3.8. Let G € AVR. Then G is residually finite, cohomologically good and
has finite virtual cohomological dimension.

Proof. By definition of the class AVR, some finite index subgroup H < G is a virtual
retract of some right angled Artin group A. Right angled Artin groups are residually
finite (see, for example, [9, Ch. 3, Thm 1.1]), hence H and G are both residually finite.
The cohomological dimension cd(A), of A, is equal to the clique number of the associated
graph (this follows from the fact that A acts freely and cocompactly on a CAT(0) cube
complex of the appropriate dimension — see [8, Sec. 3.6]), therefore cd(H) < cd(A4) < oo.
Thus ved(G) = cd(H) < oo.

To show that G is cohomologically good, we will first prove this for all right angled
Artin groups (cf. [20, Thm. 3.15] and [21]). Let B be a right angled Artin group
corresponding to some finite simplicial graph I' with vertex set V. We will show that B is
cohomologically good by induction on |V|. If [V| = 0 then B = {1} and the claim holds
trivially. Now, suppose that |V| > 0 and choose any S C V with |V \ S| = 1. Then B
splits as an HNN-extension of Bg over another full subgroup Br, for some T' C S (see [25],
Sec. 7]). Since Bg and Br are a right angled Artin groups with less than |V| generators,
they are cohomologically good by the induction hypothesis. Recall that both By and Bg
are retracts of B and B is residually finite, therefore these subgroups are separable in B
and the profinite topology of B induces the full profinite topologies on these subgroups
(cf. [28, Lemma 3.1.5]). Hence B is cohomologically good by Proposition [3.7]
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Thus we have shown that any right angled Artin group is cohomologically good. There-
fore, according to Lemma [3.1], the finite index subgroup H < G is cohomologically good,
as a virtual retract of A. Hence G is itself cohomologically good by [14, Lemma 3.2]. O

Combining Theorem with Proposition and Lemma [2.5] we immediately obtain
the following statement:

Corollary 3.9. Let G be a virtually compact special group (or, more generally, let G €
AVR). Then every element of prime order is conjugacy distinguished in G.

4. PROOF OF THE MAIN RESULT

Before proving the main result we will need two more auxiliary statements.

Lemma 4.1. Let G € VCSH and let x € G be an element of infinite order. Then x is
conjugacy distinguished in G.

Proof. By Lemma 2.5 G has a normal subgroup H, of some finite index m € N, such
that H is hereditarily conjugacy separable. By the assumptions, ™ € H is an infinite
order element in the hyperbolic group G, so its centralizer Cq(2™) is virtually cyclic (cf.
[2, Prop. 3.5]). It follows that Cg(2™) is conjugacy separable. The second condition of
Proposition follows from Lemma [2.4](b). Therefore we can use this proposition to
conclude that x is conjugacy distinguished in G, as required. 0

Corollary 4.2 (cf. [25 Cor. 9.11)). If G € VCSH and H < G is a torsion-free subgroup
of finite index, then H is hereditarily conjugacy separable.

Proof. Note that H € VCSH by Remark [2.3] hence any element of infinite order is
conjugacy distinguished in H by Lemma [£.1} Since H is torsion-free, the only element of
finite order in H, the identity element, must also be conjugacy distinguished. Thus all
elements of H are conjugacy distinguished, i.e., H is conjugacy separable.

Clearly the same argument applies to any finite index subgroup K < H. Therefore, H
is hereditarily conjugacy separable. 0

Proof of Theorem[1.1]. Consider any group G € VCSH. Choose a torsion-free normal
subgroup H < G such that n = |G : H| is minimal (such H exists by Lemma [2.5). We
will prove the theorem by induction on n. If n = 1 the statement holds because H is
hereditarily conjugacy separable by Corollary 4.2 So we can assume that n > 1 and we
have already established hereditary conjugacy separability for every group from VCSH
which has a torsion-free normal subgroup of index less than n.

We will first show that G is conjugacy separable. So, consider any element z € G. If
x has infinite order, then x is conjugacy distinguished in G by Lemma [£.1] Thus we can
suppose that z has finite order.

Set K = H(x) and observe that K € VCSH by Remark 2.3] If |[K : H| < n then
K is hereditarily conjugacy separable by the induction hypothesis, so z is conjugacy
distinguished in K. But then Lemma [2.1| implies that = is conjugacy distinguished in G,
as |G: K| <|G: H| < 0.
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Therefore we can assume that |K : H| = n = |G : H|. It follows that G = K i.e.,
G = H(z) 2 H x (), as H is torsion-free and x has finite order (which must then be
equal to n). We will now consider two cases.

Case 1: n = p is a prime number. Then z is conjugacy distinguished in G by Corol-
lary 3.9

Case 2: n is a composite number. Thus n = Im for some I,m € N, 1 < I,m <n. We
aim to use the criterion from Proposition [2.2] so let’s check that all of its assumptions are
satisfied.

Let FF = H(z™) < G. Then F € VCSH by Remark 2.3 and F = H x (Z/l). Thus
F' is hereditarily conjugacy separable by the induction hypothesis, as |F' : H| = [ < n.
Evidently, F <G and |G : F| = m. Every finite index subgroup of C¢(2™) is separable in
G by Lemma 2.4 (b), so it remains to check that z is conjugacy distinguished in Cg (™).

Set Hy = Cg(z™) N H, and observe that Cg(2™) = Hy(x) = Hy % (Z/n). Moreover,
in view of Remark 2.3 H; € VCSH as |Cg(a™) : Hi| =n < co and Cg(z™) € VCSH by
Lemma [2.4] (a).

To verify that x is conjugacy distinguished in Cg(2™), consider any element y € Cg (™)
which is not conjugate to z in Cg(2™). Since 2™ is central in Cg(2™), we can let L be the
quotient of Cg(z™) by (2™), and let ¢ : Cs(2™) — L denote the natural epimorphism.

Clearly ¢(Hy) = Hy, as Hy Nker¢ = {1}. Therefore ¢(H,) is torsion-free and L =
o(H1){¢(z)) = Hy x (Z/m), implying that L € VCSH (by Remark [2.3). Consequently,
L is hereditarily conjugacy separable by the induction hypothesis, as |L : Hi| = m < n.
Let us again consider two separate subcases.

Subcase 2.1: suppose that ¢(x) and ¢(y) are not conjugate in L. Then there is a finite
group M and a homomorphism ¢ : L. — M such that ¥ (¢(x)) is not conjugate to (o (y))
in M. Thus the homomorphism n =1 o ¢ : Cg(x™) — M will distinguish the conjugacy
classes of x and y, as required.

Subcase 2.2: assume that ¢(z) is conjugate to ¢(y) in L. Since ker¢ C (z), we can
deduce that there is h € Cg(2™) such that hyh™ = z, for some z € (z).

Now, z # =z, since we assumed that y is not conjugate to x in Cg(z™). Therefore
x =¢(x) #£(2) = z, where £ : Cg(2™) — (z) is the natural retraction (coming from the
decomposition of Cg(2™) as a semidirect product of H; and (z)). Recalling that (x) is
abelian, we see that £(y) = £(hyh™') = £(z). Therefore £(y) is not conjugate to £(z) in
the finite cyclic group (z). Thus we have distinguished the conjugacy classes of = and y
in this finite quotient of C(z™).

Subcases 2.1 and 2.2 together imply that x is conjugacy distinguished in Cg(2™).
Therefore we have verified all of the assumptions of Proposition (for G and the finite
index normal subgroup F' <1 G), so we can apply this proposition to deduce that x is
conjugacy distinguished in G. Thus Case 2 is completed.

Cases 1 and 2 exhaust all possibilities, so we have established conjugacy separability
for any group G € VCSH, which possesses a torsion-free normal subgroup H <G of index

n. If K < G is any subgroup of finite index, then K € VCSH by Remark 2.3]and H N K
is a torsion-free normal subgroup in K of index at most n. So, either using the induction
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hypothesis (if |K : (H N K)| < n) or the above argument (if |K : (H N K)| = n), we
can conclude that K is conjugacy separable as well. Hence G is hereditarily conjugacy
separable, and the step of induction has been established. This finishes the proof of the
theorem. U
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